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Abstract
Purpose – Basic safety message (BSM) is a core subset of standard protocols for connected vehicle system to transmit related safety information via
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). Although some safety prototypes of connected vehicle have been proposed with effective
strategies, few of them are fully evaluated in terms of the significance of BSM messages on performance of safety applications when in emergency.
Design/methodology/approach – To address this problem, a data fusion method is proposed to capture the vehicle crash risk by extracting critical
information from raw BSMs data, such as driver volition, vehicle speed, hard accelerations and braking. Thereafter, a classification model based on
information-entropy and variable precision rough set (VPRS) is used for assessing the instantaneous driving safety by fusing the BSMs data from
field test, and predicting the vehicle crash risk level with the driver emergency maneuvers in the next short term.
Findings – The findings and implications are discussed for developing an improved warning and driving assistant system by using BSMs messages.
Originality/value – The findings of this study are relevant to incorporation of alerts, warnings and control assists in V2V applications of connected
vehicles. Such applications can help drivers identify situations where surrounding drivers are volatile, and they may avoid dangers by taking
defensive actions.
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1. Introduction

Connected vehicles (CVs) technique is advantageous to driving
safety solutions by enhancing driver’s perception about
roadway hazards and informing driver of emergency situations
that they cannot immediately recognize. The vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communication
technology can significantly improve the driving safety on the
basis of dissimilated real-time information between connected
vehicles, such as vehicle motions, driver manipulate intentions
and traffic status. When vehicles share their running
information with other vehicles and infrastructures, driving
actions can be plannedmore secure and hazardless in advance.
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Although the comprehensive “driver-vehicle-traffic”
arrangement data have been integrated and organized by
Connected Vehicle BSMs data set, there are still challenges yet
to overcome. Most of the currently available Connected
Vehicle applications for vehicle crash risk assessment are based
on limited BSMs information with partial driving situations.
Limited or partial information means that not all the attributes
of the BSMs data set are taken into account, and the
interactions among them are not investigated comprehensively.
To solve the above problems, this paper contributes by
identifying the correlation of critical driving risk in emergency
cases with the driver maneuvers in period of last short term
based on connected vehicle BSMsmessages.
In this study, groups of field driving experiments have been

conducted to collect BSMs data under potential crash threats
in real road traffic. In acquiring real-world driving situation, a
more comprehensive dataset is built, which contains driver
characteristics, vehicle status, potential crash obstacles, road
traffic environment, weather condition and driver behavior.
Thereafter, variable precision rough set is used to reveal the
relationship among driving safety status, which includes driver/
vehicle characteristics and road environment. Mutual
information is applied to evaluate the factors that greatly
influence the driving risk level. Finally, a novel similarity
measurement is developed for addressing the assessment of
driving safety in the classification of categorical field test data.
The remainder of the paper is organized as follows. Section

2 presents a brief overview of the state of the art research on
vehicle crash risk assessment. Section 3 introduces a
connected vehicle framework for vehicle crash risk warning,
including BSMs data description. The illustration of
modeling process for near-crash risk assessment and the field
test results are respectively presented in Sections 4 and 5. The
main conclusions and the future work are discussed finally in
Section 6.

2. Related work

The literature reflects substantial increase in research activity
with regards to connected vehicles safety applications, covering
a wide range topics of how connected vehicles will be adopted
and used for collisionwarning and driver assistance.

2.1 V2X for safety improvement
The applications for driving safety based on sensors have some
limitations in pavement assessments, traffic queue estimation,
vehicle routing, driving behavior monitoring and warnings, and
they exist a large error at curves roads and intersections. But
V2X (Vehicle to X) overcomes the limitations of the sensor-
based systems to make sure that the vehicles have real and
trusted information. Areas of V2X applications for vehicle
safety improvement include intersection signals, pavement
assessments, traffic queue estimation, vehicle routing travel
time estimation, driving behavior monitoring and warnings and
vehicle fuel efficiency.
Tian et al. (2016) propose a lane speed monitoring (LSM)

application based on V2X communication. This application
uses BSM which transmitted through dedicated short range
communication (DSRC), to estimate the real-time traffic
condition at the lane level. Yu et al. (2015) propose an

integrated cooperative collision warning (CCW) system built
around the SAE J2735 BSM over V2V communications to help
drivers make right drive decision in different crash scenario,
such as forward collision warning (FCW), lane change warning
(LCW) and intersection collision warning (ICW). Sadek et al.
(2017) proposed a transportation safety algorithm based on
V2V. The proposed algorithm takes advantage of the
information that a host vehicle can get from target vehicle to
calculate the time to collision (TTC), and put thresholds for
this calculated parameter to make two level collision avoidance,
warning and full break according to predefined transportation
scenarios. There are also a number of studies using the
technology of V2V communication which have focused on
investigating driving behaviors. Vehicle motion, such as speed
and acceleration, is considered to the key information to
describe driving behaviors. Judging the driver’s driving style by
the speed of the vehicle, this is a better way to address driving
problems. Kim and Choi (2013) report thresholds for
aggressive and extremely aggressive accelerations in urban
driving environments, while De Vlieger et al. (2000) did similar
work for calm driving, normal driving, and aggressive driving.
Simons-Morton et al. (2012) advanced the characterization of
risky driving by observing the elevated gravitational force (G-
force) events that are captured when longitudinal or lateral
accelerations exceed certain thresholds. A series of applications
based on V2X communication have been designed to ensure
the safety of drivers. The previous studies propose ideas for
warnings or alerts to drivers using the connected vehicle
applications, but they have not fully assimilated the value of
information transmitted between connected vehicles. For
example, Osman et al. (2015) used driving simulator based
data. This study fully exploits the BSM data transmitted
between vehicles and infrastructure in a real-life connected
vehicle deployment. Specifically, this idea extracts useful
information about risky events from new sources of data that
may be generated in connected vehicle communication.
Most applications use basic safety messages (BSMs) to

describe vehicles’ position, motion, maneuvering, and
instantaneous driving contexts. However, most BSMs describe
normal driver behaviors. They do not provide information to
drivers when they need to make decisions based on information
received through V2X applications. In the real condition,
abnormal and extreme driver behaviors determine the safety of
drivers. Thus, it is essential to identify danger level fromBSMs,
and warn drivers to take action through the V2X applications.
Our work proposes an innovative way to make real-time risk
prediction on the basis of BSMs that may provide warning
messages to drivers through V2X applications.

2.2 Vehicle crash risk assessmentmodel
Safety distance (SD) model is one of the most important
methods in identification of longitudinal crash risk (Rendon-
Velez et al., 2009). On this basis, many scholars began to use
the safe distance model on the vehicle collision safety field and
proposed corresponding improvement measures. As a key
indicator to determinate the probability of longitudinal
vehicular collision, longitudinal minimum safety distance
(LMSD) got attention widely. So this model for the complex
traffic situations is not good enough from the aspect of the
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accuracy and the adaptability when adopting the existing safety
distancemodel to determine the vehicle collision risk.
One of the safety distance model which are widely studied

could be Time to Collision (TTC)model (Sorstedt et al., 2011;
Mobus et al., 2003; Montemerlo et al., 2012). Many
researchers consider TTC to inform the driver the driving
condition whether is safe or not. Time to collision provides a
quick estimate of the severity of a conflict to a driver and driver
assistant system, and in its definition assumes that a collision is
going to happen. Both SD and TTC models have been
extensively applied inmanymodern developed in-vehicle safety
systems based on Information and Communication
Technology (Schubert et al., 2010; Kaempchen et al., 2009).
Such systems have been expected to support the driver to
maintain safe speed and headway in all driving situations by
providing timely warning to driver when a critical safety
situation emerges. Such systems have been expected to support
the driver to maintain safe speed and headway in all driving
situations by providing timely warning to driver when a critical
safety situation emerges. However, the algorithms based on
vehicle kinematic are very susceptible to generate false
warnings, especially when driver behavior is ignored in
analyzing complex traffic scenarios.
Investigations have been conducted to identify the severity of

crashes using the Bayesian inference model and some data
mining methodologies such as Decision Tree (DT) and
Support Vector Machine (SVM). Bayesian inference model is
one of the most practical tools used for analyzing crash risk (Li
and Jilkov, 2003; Maybank et al., 1996; Hu et al., 2004). For
example, Xu et al. (2015) developed a real-time crash risk
model with limited data by using Bayesian meta-analysis and
Bayesian inference approach. In his study, the fixed effect
meta-analysis, the random effect meta-analysis and the meta-
regression were used to formulate the informative priors of the
effects of traffic variables on crash risks. Afterward, the
Bayesian inference method was used to develop the crash risk
models based on the informative priors obtained from Bayesian
meta-analyses.
Furthermore, data mining methods have been widely used to

identify the factors associated with accident severity
(Petrovskaya and Thrun, 2009; Kishimoto and Oguri, 2008).
For example, the Multi-Layer Perceptron and Radial Basis
Functions neural networks have been applied for evaluating the
traffic safety of toll plazas and the impact of electronic toll
collection systems on highway safety (Gunnarsson et al., 2006).

However, neural networks models provides the prediction
through black box simulation, therefore it cannot be used for
supporting the retro design of vehicle collision avoidance
system, which helps driver to take effective action before
involvement in high risk situation in next step. In the work of Li
et al. (2008), they developed vehicle crash prediction models
based on Support Vector Machine (SVM) and traditional
Negative Binomial (NB) model, respectively. Their evaluation
of safety performance functions for vehicle crashes assessment
revealed that SVM models performed better than traditional
NBmodels.
In general, these studies present a partial review of the road

traffic safety related factors, without investigating the
relationships of these elements with other elements. Though
some studies have made effort to address these issues by
combining multiple elements (e.g. detecting the driving
context, analysis of conditions, and proposing actions), their
number and genuine contribution were relatively low. Driving
can be interpreted as both decision-making process and as
complex information processing involving perception, analysis
and decision. It is a fact that effective collision avoidance system
requires awareness of the actual driving situation, reliable
assessment of the risks and rapid decision making about the
needed assisting actions, it is also necessary to develop
reasoning models, which can integrate the main constituents of
a driving situation, i.e. the driver, the vehicle and the
environment (including the road) with the generic phases of
completing driving, i.e. perception, analysis, decision-making
and action.

3. Framework

In this section, we proposed a framework to implement vehicle
collision risk prediction and warning system based on the
connected vehicle raw BSMs messages and extended driving
safety related messages, which are compiled into standard data
set that can be transmitted through dedicated short range
communication (DSRC) among approached vehicles. As
shown in Figure 1, the BSM information is gathered by
vehicular on-board unit (OBU), containing the instantaneous
vehicle position, vehicle motion and status of driver maneuver.
It is synchronically received the BSMs messages of remoted
vehicle delivered through the DSRC devices, which is
processed to obtain the relative speed and distance to closest
objects. These comprehensive BSMsmessage set are integrated
to collision risk assessmentmodel for informing the host vehicle

Figure 1 Schematics of connected vehicle safety applications
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drivers to adjust their maneuver behavior, and also inform the
remote vehicle drivers to avoid potential crash risk.
The emerging technique of connected vehicle request an

integrated BSM data source for promoting the vehicle safety
application, the standard BSM data set is specifically
considered the information of vehicle motions status, driver
manipulate intentions and traffic environment. These BSM
data source provides opportunities and implementations in
resolving the real-time vehicle risk assessment.
The MSG_Basic Safety Message is included and defined by

the standard of SAE J2735 (Michaels et al., 2010). The security
model for this article is designed based on this message set.
WAVE devices package vehicle status data according to BSM
and periodically broadcast it to surrounding vehicles. The
standard specifies that BSM is broadcast once for 10
milliseconds. As is shown in Table I, the basic safety message
set consists of two parts. Part I is the required content, mainly
including position information (longitude, latitude, altitude,
location accuracy), motion information (the transmission state,
speed, heading, steering wheel angle, three-axes acceleration
plus yaw rate, brake system status, vehicle size (length and
width).
MSG_Basic Safety Message Part II is optional and mainly

contains vehicle event information including vehicle safety
extension, vehicle status and other information, which still need

to be improved and formulated. For example, when a vehicle
brake in an emergency, the field of Event Flag can be set to
Hard Braking. All BSM communications in this paper will
adopt the SAEJ2735 standard. SAEJ2735 is the equivalent of a
dictionary in communication, which specifies what the
communication program code block represents.
Altogether, the experiment data set included the following six

major categories: Vehicle position information (longitude,
latitude, relative distance); driver behavior and decision
(acceleration, deceleration, steering); road obstacles (time to
collision in longitudinal direction); vehicle kinematic status
(velocity); road environment (Coefficient of friction between
wheel and road, road segment, road slipperiness). Following
previous studies, the drivers tended to adopt the rapid braking
maneuver to avoid potential crash. Hence, the driving-risk level
was represented by the braking process characteristics.
Intuitively, the driving risk is higher if the braking maneuver is
performed with greater urgency in a near-crash. The above
described information is comprehensively collected in our
designed field test for the purpose of analyzing the potential
relationship among driving risk, driver behavior, vehicle motion
and road traffic environment. The clustering braking process
characteristics data were investigated to evaluate the involvement
of driving risk in a near-crash event (Wang et al., 2015). The
distribution of these near-crashes by deceleration is summarized

Table I SAE J2735 Basic safety messages

Variable Items Description

BSM Part I
Message ID DSRC message ID The first element in every message, used by the parser to determine how to parse the rest of

the message
Message count message count A sequence number, incremented with each successive transmission, primarily used to

estimate packet error statistics
ID Temporary ID A value chosen randomly and held constant for a few minutes to help the receiver correlate a

stream from a given sender
Time DSecond Current time
Position Latitude Geographic latitude

Longitude Geographic longitude
Elevation Position above or below sea level
Position Accuracy Conveys the one-standard-deviation position error along both semi-major and semi-minor

axes, and the heading of the semi-major axis
Motion Transmission state 3 bits encode vehicle transmission

Speed 13 bits convey unsigned vehicle speed
Heading Compass heading of vehicle’s motion
Steering wheel angle Current position of the steering wheel
Acceleration set 4ways, i.e. three axes acceleration plus yaw rate

Control Brake system status Conveys whether or not braking is active on each of the four wheels, also conveys the status
of the following control systems: Traction Control, Anti-Lock Brakes, Stability Control, Brake
Boost, and Auxiliary Brakes

Size Vehicle size Vehicle length and width

BSM Part II
Safety extension Vehicle path history Optional

Future vehicle path estimation Optional
Hard active braking Optional
Coefficient of fric-tion Optional

Status Light status Optional
Wiper status Optional
Vehicle type Optional
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in Table II. The driving-risk level in each near-crash case will be
placed in one of the following three groups: low-risk, moderate-
risk and high risk.
A novel analysis presented in the study will assess the vehicle

crash risk with comprehensively considering cross section of the
factors that could affect the drivers and their responses. The field
driving experiments dataset and real time collected records were
built, which was further analyzed and classified into condition
attributes set C and decision attribute set D. The condition
attribute data set C includes groups of data relating to factors
influencing driving safety, while the decision attribute data set D
contains groups of data that evaluate driving safety situation. The
correlation between condition attributes and decision attribute
can be expressed as D = f(C). It must be noted that, the
dimension of the dataset D is equal to the data set C. Then, the
equation for driving safety under complex “driver-vehicle-
environment” situation will be D = f(C), which can be used
accurately to explore vehicle crash risk withmore related factor.

4. Modeling process

4.1 Variable precision rough set model
The variable precision rough set (VPRS) model allows the
existence of error classification rate in a certain degree, so it has
the ability to adapt to noise data, and can effectively analyze
incomplete or inaccurate information. By setting the precision
coefficient or inclusion b , the VPRS model loosens the strict
definition of boundary in the standard rough set theory. And
the reasoning process of VPRS model is simple and the
calculation amount is small, so it can greatly improve the early
warning response speed of traffic safety system.
As shown in Figure 2, we collect the basic safety message

information and establish the BSM data set. The BSM
information applied in this example are mainly composed of
four parts: vehicle location, vehicle motion state, driving
control behavior, traffic environment. And then the knowledge
acquisition, including data preprocessing of the BSM data set,
attributes reduction and other steps. The modelling steps are
introduced as follows.

4.1.1 Step1: Preprocessing of the basic safety message data set
The rough set theory requires that the data set used is in the form
of classification attribute, and the original BSM data is a large
number of chaotic time series figures. Therefore, it is necessary to
segment the raw BSM data into discrete interval, which is data
preprocessing. The preprocessing information is easily expressed
in the form of knowledge base, which is processed by the rough
set algorithm. And then the information decision table can be
formed by classifying and quantifying the conditional attributes.
The initial classification of a given condition attribute value is e,
e = {1, 2, . . ., n}, whose specific value can denote different traffic
or vehicle’s state. And the output value of the decision attribute
can be express as f = {1, 2, . . ., n}, whose specific value can
represent different driving risk level. To unify the property
indexes of the attributes in the BSM dataset, the quantitation

criterion is proposed in Table III with explicitly considering the
factors distribution from BSM and the distribution statistics of
crash accidents (Wang et al., 2015). The distributed category of
near-crash risk used in paper is shown in Table II, and we can get
driving risk level by deceleration.

4.1.2 Step 2: Attributes reduction based on rough set model
According to the quantized data, the decision-making table of
driving safety state can be generated. All attributes in the table are
divided into two kinds of attributes, the first type is condition
attribute and the second type is decision attribute. In this model,
the knowledge system of automobile real-time safety situation
assessment and prediction is composed of quaternion
relationship group S = {U, A = C | D, V, F}.Where, S is a
collision event decision table based on BSMs information, and
U = {x1, x2, . . ., xn} represents all possible traffic states; A is a
quantized set of BSM data including condition attribute C and
decision attribute D. Suppose R is an equivalent relation on U,
which can be express as U/R, and we can get U/C = {a1, a2, . . .,
an�1},U/D= {an}. The attribute in the decision table is expressed
as aj and a1 � an�1 is divided into conditional attribute, an is
decision attribute, where n� 1 is the number of BSMvariables.
In this model, C represents all variables of the BSMs

information set, and D represents the judgment of whether
there is a collision with other vehicles. The variables of the four
parts of BSMs data, including the position movement state,
vehicle maneuvering behavior and driving environment, are set
as the condition attribute, and the last column of the data
column is set as the decision attribute. According to the
knowledge acquisition steps shown in Figure 2, judging
whether the conditional attributes can be reduced in turn.

4.1.3 Step 3: Rules of export based on variable precision rough set
model
The classical rough set model will greatly reduce its ability to
predict or classify new data due to overfitting of data. To enhance
the anti-interference ability of the rough set model, parameters b
are introduced in the variable precision rough set (VPRS), which
is supposed as b [ (0.5,1]. If X ( U is any subset, R is the
equivalence relation on U. The improved positive region of dj to
C is defined as equation (1) (Park andChoi, 2015):

POSC djð Þ ¼ apr
C
djð Þ (1)

Then, the lower and upper approximations of dj can be defined
as equation (2):

aprbC djð Þ ¼ [fx 2 UjP dj jC
� � � b g (2)

where, aprb
C

djð Þ can also be recorded as posC (dj). And then we

can use it to reduct the attributes as mentioned in step 2. If the
attributes can be reduced, the rules will be output. The form of
rules is similar to IF—THEN rules. Finally, the judgment rule
base of vehicle conflict risk is formed as shown in equation (3):

ri;j : des Xið Þ ! des Yið Þ;Xi \ Yi 6¼ 1 (3)

4.1.4 Step 4: risk assessment based on information entropy model
The newBSMs information sequence is updated and acquired in
real time, to calculate the information entropy of the BSM

Table II Distributed category of near-crash risk

Driving risk level Low Moderate High

Deceleration when braking m/s2 (�2, 0] (�5,�2] (�8,�5]
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Figure 2 VPRS and information entropy flowchart

Table III Quantitation of attribute

Attributes Type Description

Driver behavior and action
Steering Boolean 0: No; 1: Yes Further categorized into:
Acc pedal Boolean 0: No; 1: Yes 1: Keep constant;
Brake switch Boolean 0: No; 1: Yes 2: Acceleration;
Turn indicator Boolean 0: No; 1: Yes 3: Deceleration;

4: Steering

Road obstacles
Vehicular distance
with obstacles in
longitudinal
direction

Consecutive Evaluated by TTC (time to collision, seconds) and quantified into three levels:
1:>5; 2: 2.1-5; 3: 0-2

Vehicle kinematic status
Velocity Consecutive Evaluated by km/h, quantified into four levels:

1: 0-40; 2: 41-50; 3: 51-60; 4:>60
Deceleration Consecutive Evaluated by m/s2, quantified into three levels:

1:>�2; 2: [�5,�2.1]; 3:<�5
Steering wheel
angle

Consecutive Evaluated by °, quantified into three levels:
1:<20; 2: [20, 100]

Weather condition
Weather Qualitative 1: Sunny; 2: Cloudy; 3: Rainy & Snowy
Road slipperiness Consecutive Evaluated by coefficient of friction between tyre and road surface, quantified into three levels:

1: 0.7-1; 2: 0.4-0.69; 3: 0-0.39
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information, and then the similarity is calculated with the rules in
the knowledge base. Considering the comprehensive similarity of
two events on all conditional attributes, the information entropy
can be used to express the similarity between two events.
Calculate the similarity between each rule in the rule base and the
new BSM information sequence, store the result in set S, and
proceed to the next step after all the calculation is completed.
The maximum value in the set S is selected and the rule of the
event base corresponding to the maximum value is determined.
The decision column result of this rule is obtained to correspond
to the rule decision, and the decision result of the risk assessment
of inter-vehicle conflict is obtained and output.

4.2 Illustrative example
This section further studies how to determine b values in a
dynamic environment, and uses VPRS model and information
entropymodel to demonstrate the calculation and processing of
data samples.The selected data samples in this section are from
part of the BSM data from our real car test. The specific
description can be seen in Section 5.1, which can prove the
feasibility of the proposed model to use the BSM data to
evaluate the driving safety state.
By taking considering of braking deceleration, crash danger

can be quantified into three levels according to Table II, which
corresponds to low, moderate and high risk, respectively. In all
of 43 groups of sample data, which were collected as a decision
table (DT), some events were in high crash risk level when the
test drivers take braking deceleration greater than 5m/s2, others
were in low risk condition when lower than 2m/s2 and yet
others were in moderate risk condition. The dataset which can
be shown in Table IV contains braking deceleration values
(present the emergency in these near crash scenarios) and its
influencing factors (a1: driver behavior and action, a2: steering
wheel angle, a3: acceleration, a4 vehicle velocity, a5: vehicle
performance, a6: headway to the preceding vehicle, a7:
minimum headway to the approaching vehicles in the neighbor
lane, a8: coefficient of friction between wheel and road surface),
and all the eight condition attributes can be obtained in BSM
data set. In this DT, some of the attributes values are
consecutive variables, which need to be quantified before we
investigate the correlation of the crash risk with the influencing
factors and identify the risk level based on the reduct of this
DT. Table IV shows theDT after the quantification.
To illustrate the application of the proposed algorithm, four

steps for calculating the reducted DT and assessing vehicle
crash risk in near crash scenarios is given as follows.

4.2.1 Step 1: obtaining the value of precision parameter b
In the DT shown in Table IV, C = {a1, a2 ,a3, a4, a5, a6, a7,
a8} is the condition attributes set, and D={d} is the decision
attribute set, which represents crash risk level. Based on the
values of the condition attributes, a family of indiscernibility
class U/C determined by C can be expressed as Xi = {[ut]/ut [
U, t [ [1,43]} and a set of indiscernibility class U/D according
to D can be expressed as Xi = {[ut]/ut [ U, t [ [1,43]}. For
example, X3 = {u3, u4}, Y3 = {u10, u18, u29, u38, u43}, et al.
Totally, we can define 36 equivalence classes determined by
condition attribute set C, and 3 indiscernibility classes based
on decision attribute setD.

Then, the inclusion degrees of each conditional indiscernibility
Xi to each determinal indiscernibility Yj is respectively
calculated according to Figure 2 and expressed as P (Yj | Xi),
e.g. P (Y1 |X1), P (Y2 |X5) = 2/3, P (Y3 |X1) = 0. With these
inclusion degrees, the least upper bound value on b between
(0.5, 1] is calculated according to Figure 2. Taking an example:

m1Y1 ¼ 1�maxfP Y1jXkð ÞjP Y1jXkð Þ < 0:5g ¼ 0:67

m2Y1 ¼ 1�minfP Y1jXkð ÞjP Y1jXkð Þ > 0:5g ¼ 0:67

Table IV Decision table after quantification process with data from
experiment

Condition attributes
U a1 a2 a3 a4 a5 a6 a7 a8 d

u1 1 1 1 2 1 2 1 1 1
u2 1 1 1 2 1 2 3 1 1
u3 1 1 1 3 1 2 2 1 1
u4 1 1 1 3 1 2 2 1 1
u5 1 1 1 3 1 2 1 1 1
u6 1 1 1 3 1 2 2 2 1
u7 1 1 1 3 1 2 2 2 2
u8 1 1 1 3 1 2 2 2 2
u9 2 1 1 2 1 2 2 1 2
u10 2 1 1 3 1 3 2 1 3
u11 2 1 1 1 1 2 1 1 1
u12 2 1 1 1 1 3 1 1 2
u13 3 1 1 1 1 2 2 1 1
u14 3 1 1 2 1 2 3 1 1
u15 3 1 1 3 1 3 2 1 2
u16 3 1 1 2 1 2 3 2 2
u17 4 1 1 1 1 3 1 1 1
u18 4 1 1 2 1 2 3 1 3
u19 1 2 2 2 1 3 1 1 2
u20 1 2 2 2 1 2 1 1 1
u21 1 2 2 2 1 2 1 1 1
u22 1 2 2 2 1 2 2 1 1
u23 1 2 2 2 1 2 2 1 1
u24 1 2 2 2 1 2 2 1 2
u25 2 2 2 2 1 1 3 1 1
u26 2 2 2 2 1 2 3 1 2
u27 2 2 2 1 1 2 1 1 2
u28 2 2 2 2 1 2 2 2 2
u29 2 2 2 3 1 3 2 1 3
u30 3 2 2 2 1 2 3 1 1
u31 4 2 2 3 1 2 2 1 2
u32 4 2 2 2 1 2 3 1 2
u33 1 1 3 2 1 1 1 1 1
u34 1 1 3 2 1 2 1 1 1
u35 1 1 3 2 1 3 1 1 2
u36 2 1 3 1 1 2 1 1 1
u37 2 1 3 1 1 2 1 1 2
u38 2 1 3 3 1 2 1 1 3
u39 3 1 3 2 1 2 3 1 1
u40 3 1 3 3 1 2 3 2 2
u41 4 1 3 2 1 2 2 1 1
u42 4 1 3 3 1 2 2 1 1
u43 4 1 3 2 1 2 3 1 3
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Thus, b Y1
¼ 0:67.We calculate b Y2

and b Y3
by the same way,

and get the results as follows:

bY2
¼ 0:67; b Y3

¼ 1

Then, the percentage of effective sorting decision informationD
based on C is calculated with the b value on the range of (0.5,
0.67] and (0.67, 1] respectively. The quality of classification is:

gb 2 ð0:5;0:67�ðX; YÞ ¼ 0:95

gb 2 ð0:5;0:67�ðX; YÞ ¼ 0:81

Obviously, when b is equal to 0.67, it meets the requirement of
the most quality of classification. Therefore, set b as 0.67
according to two propositions presented in Section 4.2.

4.2.2 Step 2: b reduct of decision table
The choice of the b reduct attribute set is another procedure,
which focuses on the identification of the effective attributes that
could be really related with the decision attributes, and used to
form a set of deduction rules for decisionmaking. According to the
two properties, the b reduct attribute set B, where B( C, should
satisfy that gb (C, d) = gb (B, d). The reduct set B is showed in
Table V.

In Table V, the b - reduct produces 30 rules. Noted that the
value of support means the number of which the rule is
observed. The results of b -reduct show that, compared with
the driver behavior and action, vehicle velocity, headway
between vehicle and obstacles, and road slipperiness, the
participants age and gender have a little influence on driving
safety. It should be also noted that, the condition attribute a5
(vehicle performance) is a constant in Table III, which in turn,
reflect the less influence of vehicle performance on driving safety
during the process of attributes reduct. However, vehicle
performance is of importance attribute on decision of driving
safety status. The results of attributes reduct in Table V only
present the crash risk evaluation rules under condition of good
vehicle performance. In addition, variable a1 has steering action,
such as a1=4 means steering. So a1 and a2 is kind of correlated,
and we can conclude the reason that variable a2 is reduced is
that a1 may be significant, but there is no significance founded
in our test because of potential correlation between a1 and a2.

4.2.3 Step 3: evaluating weights of condition attributes on decision-
making
The importance of the variables can be obtained based on
b -reduced DT by using mutual information entropy method,
which can be used to quantify the influence of potential risk
factors on driving risk level. Groups of indiscernibility classes
U/Bsubset and U/D determined by subsets of B and D can be
expressed asU=B� faig ¼ fXB�faig

i =i ¼ 1;2; . . . ; jB� faigjg.
The conditional entropy of D given different conditions B are

calculated according to Figure 2 as follows:

H D=Bð Þ ¼ 0:3317

H D=B� fa1gð Þ ¼ 0:7816

H D=B� fa4gð Þ ¼ 0:4531

H D=B� fa6gð Þ ¼ 0:5387

H D=B� fa7gð Þ ¼ 0:4442

H D=B� fa8gð Þ ¼ 0:456

Then, the significance of each attribute in {a1, a2, a3, a7, a8} to
the classification results can be evaluated according to Figure 2
as follows:

SIG ¼

1 3:71 2:17 3:99 3:62

0:27 1 0:59 1:08 0:98

0:46 1:71 1 1:84 1:67

0:25 0:93 0:54 1 0:91

0:28 1:02 0:6 1:1 1

2
66666664

3
77777775

The corresponding weight for each condition attribute is
calculated according to Figure 2 as follows:

v i ¼ 2:5902 0:6989 1:1917 0:6477 0:7156
� �

After normalization, the attribute weights are

v 0 ¼ 0:4432 0:1196 0:2039 0:1108 0:1225
� �

4.2.4 Step 4: decision-making on attributes weighted similarity
Actually, if the decision table is constructed with information of
the driver braking deceleration under limited near-crash
scenarios, the decision table cannot cover the complete cases in
the field test situation. In such situations, there will be some

Table V Description of rules obtained from b -reducted DT

Rules
If the attributes takes the values as Then

Supporta1 a4 a6 a7 a8 d

1 1 2 1 1 1 1 1
2 1 2 2 1 1 1 4
3 1 2 2 2 1 1 2
4 1 2 2 2 1 2 1
5 1 2 2 3 1 1 1
6 1 2 3 1 1 2 2
7 1 3 2 1 1 1 1
8 1 3 2 2 1 1 2
9 1 3 2 2 2 1 1
10 1 3 2 2 2 2 2
11 2 1 2 1 1 1 2
12 2 1 2 1 1 2 2
13 2 3 2 1 1 3 1
14 2 1 3 1 1 2 1
15 2 2 1 3 1 1 1
16 2 2 2 2 1 2 1
17 2 2 2 3 1 2 1
18 2 2 2 2 2 2 1
19 2 3 3 2 1 3 2
20 3 1 2 2 1 1 1
21 3 2 2 3 2 2 1
22 3 2 2 3 1 1 3
23 3 3 3 2 1 2 1
24 3 3 2 3 2 2 1
25 4 1 3 1 1 1 1
26 4 2 2 3 1 3 2
27 4 2 2 3 1 2 1
28 4 2 2 2 1 1 1
29 4 3 2 2 1 2 1
30 4 3 2 2 1 1 1
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unseen cases which will not match the reducted classification
rules extracted from the DT. This makes the classification
more ambiguous. For example, the driving safety situation is
evaluated with a group of detected information (the left-turn
indicator is on and driver is taking steering action, vehicle
velocity is 47.3 km/h, the headway to preceding vehicle is
1.25 s, minimum headway to the approaching vehicle in the
target lane is 5.13 s, road adhesion coefficient is 0.7. After

quantification according to Table III, the driving safety related
condition attributes set in current situation is uj = {4 3 2 1 1},
which does not match any rules in b - reducted DT shown in
Table V. Then, attributes weighted similarity measurement can
be used to classify the evaluated driving safety level by searching
the rule with themaximum similarity with uj.
According to Figure 2, the weighted similarity of uj and ui are

respectively calculated as follows:

S u1; ujð Þ ¼ 0:07;S u2; ujð Þ ¼ 0:09;S u3; ujð Þ ¼ 0:07;S u4; ujð Þ ¼ 0:07;S u5; ujð Þ ¼ 0:06;S u6; ujð Þ ¼ 0:11;

S u7; ujð Þ ¼ 0:08;S u8; ujð Þ ¼ 0:07;S u9; ujð Þ ¼ 0:05;S u10; ujð Þ ¼ 0:05;S u11; ujð Þ ¼ 0:11;S u12; ujð Þ ¼ 0:11;

S u13; ujð Þ ¼ 0:11;S u14; ujð Þ ¼ 0:13;S u15; ujð Þ ¼ 0:07;S u16; ujð Þ ¼ 0:10;S u17; ujð Þ ¼ 0:09;S u18; ujð Þ ¼ 0:09;

S u19; ujð Þ ¼ 0:12;S u20; ujð Þ ¼ 0:13;S u21; ujð Þ ¼ 0:11;S u22; ujð Þ ¼ 0:12;S u23; ujð Þ ¼ 0:15;S u24; ujð Þ ¼ 0:10;

S u25; ujð Þ ¼ 0:19;S u26; ujð Þ ¼ 0:15;S u27; ujð Þ ¼ 0:15;S u28; ujð Þ ¼ 0:16;S u29; ujð Þ ¼ 0:16;S u30; ujð Þ ¼ 0:16:

Based on the similarity results, the class of the sample ui can be
assessed using decision in uj that maximizes S (ui, uj):

max
30�i�1

S ui ; ujð Þ ¼ S u25; ujð Þ

In this case, the existed crash risk with the situation m j is low.
The result also explains that although the headway of subject
vehicle with the preceding vehicle is less than 2 s, which is
thought to be a dangerous situation by safety distance model,
the driving status is evaluated to be safe. Because the
participant driver is steering to the target lane, on which, the
longitudinal vehicular headway is satisfied for lane change.

5. Results and discussion

5.1 Experimental conditions
The field driving test was conducted using experimental vehicle
equipped with on-board units (OBU) devices, which provided
BSMmessages according to the SAE J2735 standard. The field
test was set over a route in the central part of the city of Wuhan,
China. On the left of Figure 3 is the area of one test route (solid
black) where the data were collected. However, the vehicle
positions described in longitudinal and lateral degree could not

be directly used for evaluating the vehicles motion status in the
original tested data collected. The route selected for the driving
test is almost similar with the urban city traffic conditions in
China, i.e. city ring road and expressway (usually low traffic
volume and may have congestion). The experiments were
carried out from 7:30 a.m. to 9:30 a.m. and 17:00p.m. to
19:00p.m. Within these time frames, the traffic flow is denser
and traffic crash is more frequent, also as shown in the right
part of Figure 3(a)-(f) shown in the Figure 3 are the real road
scene of some near-crash events.
In this study, the driver’s high deceleration behavior was

considered to be a crash risk related event. The samples from
field test were extracted in this study. The sum of driving time
and range was approximately 51h and over 978.9km,
respectively. In our experiments, the near-crash events were
initially identified by detecting unusual vehicle kinematic data
from BSMs data set. The BSM data was marked under real
traffic environment, when the vehicle deceleration reached a
threshold value (longitudinal: �1m/s2, lateral: �0.5m/s2) or
TTC (time to collision) between the test vehicle and preceding
vehicle is less than 3 s, the OBU recorded the vehicle state (i.e.
speed, brake signal, steering signal and three-axis acceleration),
the TTC with approaching vehicles in the longitudinal

Figure 3 The area of one on-road test

(a)

(a)

(d) (e) (f)

(b) (c)

(b)
(c)(d)

(e)
(f)
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direction, while a video device synchronically recorded the
extreme events happening at the time. Note that, it is very
necessary to review the recorded video data to decide whether
an event triggered by kinematic thresholds was actually safety
critical. If not, such an event was not defined as near-crash and
was deleted from the data set. For our experimental data, the
recorded cases were checkedmanually.

5.2 Distribution of driving behavior
Figures 4 and 5 show the comparison of the velocity and
acceleration of the vehicle in both the longitudinal and lateral
directions, respectively. Distributions of variables seemed
reasonable in terms of magnitude and spatial characteristics.
Data sampled at a high frequency, 10Hz, yielded deeper
insights into instantaneous driving behaviors. This study used
various data visualization tools to show the extent of
instantaneous driving volatility, including distributions of
longitudinal and lateral acceleration, speed-based distributions,
three-dimensional distributions of longitudinal acceleration-
lateral acceleration-speed, and driving volatility on different
road types. This paper provides data visualization details.
Then, extreme driving events will be identified in accordance
with special rules.
Table VI shows the descriptive statistics of selected variables

in the final datasets. Based on the error-checked descriptive
statistics and the distributions, the data seemed to be of
reasonably good quality. The experiment was carried out on
urban roads with complex road conditions, and the operational
data of vehicles in different traffic environments can be
obtained. The running trajectory of the vehicle during the
morning and afternoon experiments was basically the same. In

Figure 4, the green line indicates lateral velocity, and the red
line indicates longitudinal velocity. It can be seen that the
lateral velocity changes are relatively stable, and the lateral
velocity has a small variance value, indicating that the lateral
velocity value distribution is concentrated, and is not like
longitudinal velocity. The range of variation is large. In
Figure 5, the blue line represents lateral acceleration, and the
purple line represents longitudinal acceleration. There are
several large decelerations events in the lateral acceleration of
the vehicle in the longitudinal direction. Unlike Figure 4, the
acceleration values in both directions are smaller and the
distribution is more concentrated, but the difference between
the minimum and maximum values is larger. It indicates that
there is a sudden deceleration and rapid acceleration event in
the running of the vehicle, but generally it will keep running
smoothly. After statistics, the number of events with a forward
acceleration of more than 3m/s2 or less than �3m/s2 is 5, and
the number of events with a lateral acceleration of more than
3m/s2 or less than �3m/s2 is 4; in the pm data, the number of
events with a forward acceleration of more than 3m/s2 or less
than �3m/s2 is also 5, and the lateral acceleration of more than
3m/s2 or less than �3m/s2 is 4. The number of incidents was
also four, accounting for less than one thousandth of the total
number of incidents.
Previous studies indicate that extreme driving events (e.g.

hard braking or acceleration) are associated with
comprehensive “road-driver-vehicle” conditions, such as
obstacles on roads, poor pavements, slippery road surface,
sharp curves, and sensitive acceleration or braking systems,
which can also be reasons for extreme driving events (Liu and
Khattak, 2016). Therefore, we focused on the analysis and
assessment of driving safety in near crash scenarios. Driving risk
is identified as a potential threat that could cause vehicle
crashes. Usually, the consequence of driving risk for a driver in
hihe/sher normal state is mainly reflected by rapid evasive
maneuvers (i.e. emergency braking and/or steering operation),
which have been employed by many studies on naturalistic
driving to identify near-crashes situations (Bareket et al., 2003;
Dingus et al., 2005; Wang et al., 2015). Near crash implies that
the driver performs a rapid evasive maneuver (i.e. emergency
braking and/or steering operation) that did not result in real
crash.

5.3 Evaluation of driving safety
In this work, we take vehicle longitudinal emergency cases as
examples to explicitly evaluate the crash risk of the test vehicle
and preceding vehicle in near-crash scenarios, as described in
Section 4.2. This subset is a representative sample, in which the
experimental vehicle recorded all the parameters in Table III
when the vehicle deceleration reached a threshold of �1.5m/s2

or TTC was less than 3 s, the immediate data and previous
sampling points were both recorded. So we extract a group of
BSM data set samples in the near crash scenarios and predict
driving risk level before 0.5 s by integrating different attributes
as inputs. A Total of 678 groups of sample data were collected,
and randomly divided into two subsets: 628 for learning and
the other 50 for testing.
The actual driver acceleration/deceleration are represented

with circle point and classified into three scopesm/s2: (�2,1.8],
(�5, �2] and (�6,�5], which respectively indicate three crash

Figure 5 Longitudinal and lateral acceleration

Figure 4 Longitudinal and lateral velocity
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risk levels. The fitted results are represented with solid dot,
predicting the extent of driver’s acceleration/deceleration in
next short term. The longitudinal headway between vehicle on
changing lane and approaching vehicles in neighbor lane is also
evaluated by TTC, which is usually widely accecpted as
binomial judgement for assessing vehicle crash risk by setting a
threshold (Weng et al., 2014) . When the TTC between the test
vehicle and preceding vehicle was less than 2 s, these scenarios
are viewed as risk situation.
Furthermore, the impact of “driver-vehicle-road”

arrangement on the driving safety has been investigated by
using different combination of the attributes vector C = { c1, c2,
c3, c4, c5, c6, c7, c8, c9} as inputs, where c1 presents driver, c2
presents the wheel steering angle, c3 presents the vehicle
acceleration, c4 presents vehicle velocity, c5 presents TTC in
occupied lane, c6 presents TTC in neighbor lane, c7 presents
road segment type, c8 presents traffic congestion, c9 presents
road slipperiness. In Figure 6, we illustrated the prediction
results by respectively using rough set reduct attributes vector
{c1, c4, c5, c6, c9}, selected attributes vector {c1, c5, c6} and TTC
{c5} as inputs. Consequently, we achieve 88.68 per cent of
correct prediction before the driver take the harsh deceleration
in consequent short term when using the selected attributes
vector as input, while only 82.13 per cent of vehicle crash risk
has been accurately predicted by using TTC as input. It
indicates the significance of driver behavior and decision on the
impact of safety driving, for example, when driver approaches

to preceeding vehicle, they may take both acceleration and
steering for lane changing if they confirm the safe longitudinal
headway on both occupied lane and target lane. Although
longitudinal headway of the vehicle with preceding vehicle in
occupied lane gradually decreases, the host vehicle increases
the lateral displacement by lateral movement and finally avoids
the collision risk. We further examined the prediction
performance by using reduct attributes as input according to
our proposed model, then we can achieve the higher accuracy
as 94.34 per cent. Although the attribute a4 and a8 have no
direct relativity with vehicle crash risk, when comprehensively
consider all attributes above, the prediction has been improved,
which testify the over speeding behavior and road snippiness
effectively characterize the potential vehicle crash risk. The
prediction performance have been further compared by using
all the attributes in vectorC as inputs, as shown in Figure 7, the
accuracy is 92.45 per cent, which testify the attributes c2, c3 and
c8 having insignificant impact on driving safety.

6. Conclusions

Connected vehicles are a relatively new and emerging area of
research activity in intelligent transportation systems, with
strong interest from a wide audience that includes government
agencies, auto makers, practitioners and researchers who are
interested in implementing connected vehicles. The findings of
this study are relevant to incorporation of alerts, warnings and
control assists in V2V applications of connected vehicles. Such

Table VI Statistical calculation of experimental data

Variable Mean Var Std Minimum Maximum

Longitudinal velocity (m/s) 4.6644 29.6814 5.4481 �9.594 22.634
Lateral velocity (m/s) 0.0561 0.5259 0.7252 �10.602 4.173
Longitudinal acceleration (m/s2) �0.0096 0.3723 0.6102 �5.641 5.246
Lateral acceleration(m/s2) 0.004 0.1599 0.3998 �3.893 6.619

Figure 6 Results of vehicle collision risk prediction based on reduct
attributes, selected attributes and TTC Figure 7 Results of vehicle collision risk prediction based on reduct

attributes, collected attributes and selected attributes
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applications can help drivers identify situations where
surrounding drivers are volatile, and they may avoid dangers by
taking defensive actions.
In this paper, we demonstrated how the Connected Vehicle

BSM data can be linked with the real-time crash risk in certain
emergency situation through the proposed machine learning
method, which can be trained and validated using BSM data.
By aggregating a large sample of BSM data it will be possible to
learn typical driver behavior for a road network. Location
specific models of driver behavior are an important resource for
future safety systems. Safety systems that are able to compare
observed driver behavior against a database of expected
behaviors for a specific location will be better equipped to
detect abnormal activity. Observing actions outside of the
expected range of normal behaviors may be a strong signal that
a high risk situation is developing.
Notwithstanding the extensive contribution of the study to

the growing body of literature and expert information on
driving safety, it must be noted that, there are some limitation
in our conducted field driving test. In our current database, the
influence of BSMs on the driving risk was not fully addressed.
Only longitudinal driving safety situation assessment has been
processed and evaluated. The time-duration of the current
experiment was not very long enough to collect data under all
conditions. Despite such limitations, the proposed method
quantify the driving risk in near-crash event and to analyze the
associated risk-factors, this can be extrapolated to specific
studies on more complex scenarios. These scenarios can be
constructed by the basic scenarios studied in this paper.
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