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Abstract

Purpose — The purpose of this paper is to characterize distracted driving by quantifying the response time and response intensity to an emergency
stop using the driver's physiological states.

Design/methodology/approach — Field tests with 17 participants were conducted in the connected and automated vehicle test field. All participants were
required to prioritize their primary driving tasks while a secondary nondriving task was asked to be executed. Demographic data, vehicle trajectory data and
various physiological data were recorded through a biosignalsplux signal data acquisition toolkit, such as electrocardiograph for heart rate, electromyography
for muscle strength, electrodermal activity for skin conductance and force-sensing resistor for braking pressure.

Findings — This study quantified the psychophysiological responses of the driver who returns to the primary driving task from the secondary nondriving task
when an emergency occurs. The results provided a prototype analysis of the time required for making a decision in the context of advanced driver assistance
systems or for rebuilding the situational awareness in future automated vehicles when a driver's take-over maneuver is needed.

Originality/value — The hypothesis is that the secondary task will result in a higher mental workload and a prolonged reaction time. Therefore, the
driver states in distracted driving are significantly different than in regular driving, the physiological signal improves measuring the brake response
time and distraction levels and brake intensity can be expressed as functions of driver demographics. To the best of the authors’ knowledge, this is
the first study using psychophysiological measures to quantify a driver's response to an emergency stop during distracted driving.
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crashes in 2020 nationwide in the USA (NHTSA, the National

Highway Traffic Safety Administration, 2019). Distracted

driving refers to any activities that could divert a motorist’s

attention away from the primary task of safe driving. It has been

widely acknowledged as a risky behavior that poses a danger to

the vehicle occupants and the traffic community (e.g. motorists,

pedestrians and bicyclists). Distractions in driving can be

generally categorized into three types:

1 visual, e.g. looking at something other than the road;

2 manual, e.g. manipulating something other than the
steering wheel; and

3 cognitive, e.g. thinking about something other than
driving.

In the actual driving context, the distraction sources are usually
complex and may include a combination of one or more of the
three types. The most alarming facts are that the driver’s visual,
manual and cognitive attention are often altogether distracted
away from driving, such as texting or playing mobile games
(AAA Foundation for Traffic Safety, 2020). Therefore, it has
been attracting a large body of research attention to underline
how drivers react when driving with multiple distractions (Qi
etal.,2020).

Several studies have reported that distractions cause brake
response, especially when braking is urgently needed (Lee ez al.,
2001; Strayer and Johnston, 2001; NSC, the National Safety
Council, 2012; Gao and Davis, 2017). Brake response time is
one of the critical surrogate measures for crash risks (Green,
2000; Jurecki and Stanczyk, 2014). The brake response time
can be typically obtained by observing the brake lights
(Johansson and Rumar, 1971) or measuring the pedal effort
(Fitch et al.,, 2010; Gao and Davis, 2017). In the literature,
braking response time varies due to driver’s expectations
(Green, 2000), level of attention (Lee et al., 2001), situation
urgency (Summala, 2000), as well as differences in measuring
methods (Jurecki and Stanczyk, 2011). However, these
previous studies designed driving tasks and traffic scenarios
without sufficient concern for the driver’s psychophysiological
response to emergency braking.

Conventional ADAS use automated technology to detect
nearby obstacles or driver errors, which relies on inputs from
multiple data sources, including automotive imaging, lidar,
radar, image processing and computer vision. Human
cognition is a critical factor for traffic accidents and poor
driving performance, assessment of covert cognitive states of
drivers through psychophysiological measurements is adopted
by ADAS to predict and augment risky driving behavior
(Lohani ez al., 2019). With the rapid growth of sensor
technology, researchers began to investigate the behavior of
distracted driving with psychophysiological signals such as
heart rate, breathing, blood pressure and skin conductance
(Grassmann er al., 2016; Haufe ez al., 2014). Currently, it has
been widely used for investigating drivers’ fatigue and
drowsiness (Li et al., 2011), distraction and inattention, mood
(Castegnetti er al., 2017) and aggressiveness (Malta et al.,
2001). Unsurprisingly, it also shows an innovative way to
measure drivers’ brake response time during distractions
(Arakawaeral., 2019; Gao er al., 2020).

Past studies associated with measuring the impact of
distracted driving on safety can be categorized into three types,
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including data analysis (Peng and Boyle, 2012; Qin ez al., 2019;
Jamil ez al., 2021), driving simulator studies (Nowosielski ez al.,
2018; Xu and Lin, 2018; Arkonac et al., 2019; Zhang et al.,
2019; Baldo ez al., 2020) and field studies (Dingus ez al., 2016;
Ma et al., 2018; Arvin et al., 2019; Hernandez-Rojas ez al.,
2019; Arvin and Khattak, 2020; Gao et al., 2021). Due to
driving simulation providing a low-cost method for driver
behavior data collection, most distracted driving studies were
conducted in a simulator environment. Field study is
undertaken within a natural environment, allowing researchers
to gain firsthand experience and knowledge about the people,
events and processes they study. However, the acquisition of
field data is costly and time-consuming. Compared with data
analysis and driving simulator study, the field study is a more
appropriate approach to quantifying distracted driving
behaviors and their influences on other factors (Wu and Xu,
2018; Wijayaratna et al., 2019). Currently, there are few reports
of studies related to secondary in-car tasks. Most field studies
investigate the naturalistic driving data collected from the
cameras and sensors to find the riskiest factors outside the
vehicles faced by drivers during driving (Dingus ez al., 2016;
Arvin and Khattak, 2020). There is still a lack of field tests of
drivers’ physiological states of driver distraction involves a
secondary task when an emergency brake occurs.

Drivers with experience in using ADAS on more vehicle
control tasks, like adaptive cruise control and lane-keeping
assist, may increase drivers’ engagement in distracted driving
(Arkonac et al., 2019; Hungund ez al., 2021; Xue et al., 2021).
With the developments in the field of wearable physiological
sensors (Lu ez al., 2020), the additional information collected
from the driver will be used to improve the ADAS. This study
attempted to outline an explanatory framework for emergency
brakes in distracted driving situations, characterized by driver
demographics, vehicle kinematics and more importantly
physiological signals. Using a biosignalsplux signal data
acquisition toolkit, an experiment was properly designed to
characterize distracted driving related to secondary in-car tasks
by quantifying the response time and response intensity to an
emergency stop using the driver’s physiological states.
Specifically, the paper attempts to answer the question when
the driver of a vehicle is suddenly faced with a critical risk of
collision, how fast and strong an evasive maneuver (e.g. brake)
is applied given the driver is distracted driving. The proposed
framework will guide the potential causal role of distraction
load when drivers use ADAS.

2. Experiment setup and testing field

The test field is located at the automobile test ring road of
Chang’an University in Xi’an, China. This oval-shaped, closed
test ring road measures 2.4 km long in total, complemented by
a 1.1 km straight road on its central axis. The experiments were
conducted at the northeast corner of the test field where parts of
the ring road and the straight road form a loop, as indicated in
Figure 1. The test vehicle is a compact SUV manufactured by
BYD auto group in China. The vehicle model is BYD Yuan
EV360 with front-wheel drive and automatic transmission. It
should be noted that the test vehicle is electric-powered, and
electric vehicles’ driver behavior patterns will be different from
those of traditional gasoline vehicles. There are some
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Figure 1 The test site at Chang'an University

differences in driving characteristics between electric vehicles
and gasoline vehicles, particularly a stronger accelerating and
decelerating within the first experiences with electric vehicles
(Helmbrechtezal., 2014).

During the experiments, the focus is on using advanced
measurement devices to collect data about the driver’s
physiological states. Biosignalsplux, a body sensor system from
Plux ™, Portugal, is adopted in this study. It provides solutions
to acquire reliable psychophysiological signal data by
integrating various user-selectable sensors, working with
Bluetooth and internal memory. Because of its low-cost,
purpose-built and self-wearable, the toolkit is ideal for field
driving tests. Figure 2 shows the Biosignalsplux signal data
acquisition toolkit used in this study. An eight-channel
wearable hub is plugged into eight amplifiers (i.e. body
sensors), and their succinct applications are listed below:

1 Channel 1: Electrocardiography (ECQG) for heart activity;

2 Channel 2: Electromyography (EMG) for muscle activity
(e.g. the right calf);

3 Channel 3: Force-sensing resistor (FSR) for braking
force;

4  Channel 4: Electrodermal activity (EDA) for skin
conductance;

5 Channel 5: Piezoelectric respiration (PZT) for respiration
change;

6 Channel 6. Temperature (TMP) for body surface
temperature;

Figure 2 Biosignalsplux data acquisition system
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7 Channel 7: Accelerometer (ACC) for vehicle braking
deceleration rate; and

8 Channel 8: Electroencephalography (EEG) for brain
activity.

Body sensors (i.e. ECG, EMG, EDA and EEG) used pregelled
(coated with Ag/AgCl polymer and conductive/adhesive
hydrogel), disposable, snap-on electrode patches. As shown in
Figure 2, these peel-and-stick disposable electrodes are buckled
onto the sensor heads and attached to the corresponding skin
surface of the human body. In addition to the eight-channel
sensors, the system also includes a marker (see Figure 2), which
is a handheld switch for event annotation. In the time-stamped
data recording, the period of a certain event can be marked by
continuously pressing or releasing the button (pressing = 1,
releasing = 0). It facilitates locating the event in later data
review or processing without affecting the functionality of the
system. The system comes with software that is a suite of data
analysis add-ons for real-time signal visualization and
recording. Data are acquired from all channels simultaneously
and transmitted to the local server (e.g. laptop) wirelessly.

The experiments were conducted from 19 to 26 August
2019. Because the test field was closed (nonpublic), no
pedestrians or other vehicles would be present on the test track.
At the beginning of the experiment, all the drivers wore the
toolkit of the body sensors by professional staff to ensure
the correct setup. Afterward, the divers were required to drive
the vehicle on the test loop and execute different driving tasks.
During driving, the participants were asked to perform three
hard braking maneuvers in response to a clear verbal “stop”
order given by the experiment assistant in the car. The “stop”
order was randomly given when vehicles were running on a
straight section of the test site. The time gap between any two
“stop” orders was greater than 1minute to avoid confound
effects.

In the worst-case scenario where drivers are distracted in all
three ways — visual, manual and cognitive, a secondary task of
playing a game on a mobile phone was designed. That said, two
driving scenarios were tested for each participant:

1 regular driving when safe driving is the primary and only
task of the participant; and

2 distracted driving where drivers are asked to execute a
secondary nondriving task (mobile game) under the
premise of safe driving.

Figure 3 shows the status of the participants in the two driving
scenarios during the test. The source of driving distraction is
designed to play a coloring game. In the game, a simple picture
of seven colors is pixelated into 618 equal cells. Participants can
color it by numbers (1 through 7 correspond to seven given
colors) marked in the cell. Participants were told that the final
game score consisted of gaining points for correct coloring and
double losing points for incorrect coloring, and a higher score
would be rewarded. The participants must pay enough
attention to their mobile phones to handle the game properly.
In contrast to regular driving, participants’ visual, manual and
cognitive abilities would be affected to varying degrees by
distracted driving. Specifically, the participant’s vision must
switch back and forth between the road and the mobile screen;
the participant holds the mobile phone with one hand which is
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Figure 3 Regular driving (left) and distracted driving (right) in the test

off the steering wheel; and the participant allocates some
cognition to the mobile game.

3. Experiment process and data collection

3. 1 Experiment process

According to the experiment design in this study, the data
acquisition procedure mainly includes five steps, as illustrated
in Figure 4. Each step is elaborated on below.

First, the introductions about the experiments were provided
to participants including showing the test site and getting
familiar with the test vehicle. Participants were told that the
upper-speed limit of the test site was 40 km/h, but they can
drive at their self-evaluated safe speed. For example, they may
slow down when they are in uncertain driving conditions,
limited sight distance or distracted. Besides the driving task, all
participants were told that an emergency stop order would be
randomly released by the assistant sitting next to them, and that
they should act immediately once heard. The experiment lasts
about 30 minutes for each participant.

Figure 4 Data acquisition procedure
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Next, the experimental staff attached the electrodes of four
sensors onto the corresponding locations of the participant’s
bodies. More specifically, the three-lead ECG (for heart
activity) was attached to the participant’s left chests. EMG for
muscle activity during braking was measured with three
electrodes, two positioned at the right calf muscles and one
stuck to the right ankle (less muscle) as the benchmark. EDA
for skin conductance attached two electrodes to the sole of the
foot (mostly left foot). EEG (for brain activity) had three
electrodes: one long electrode was stuck onto the forehead
while the other short electrodes were on the back of the head.
The technical details about obtaining physiological signal data
from the equipment are available in PLUX (2019) and
Braithwaite ez al. (2013). The PZT sensor for respiration was
tied to the participant’s chest by an elastic strap. A localized
sensing element was embedded to measure displacement
variations due to inhaling or exhaling. Moreover, TMP was
used for skin temperature with only one contact thermistor
taped to the skin surface of the leg. Another two sensors are not
on the driver. The FSR sensor was taped onto the center of the
braking pedal to measure the braking force. The ACC sensor
was firmly taped on the vehicle to measure the deceleration on
the longitudinal of the vehicle.

In regular and distracted driving situations, participants were
asked to take an emergency stop. Specifically, participants
randomly received a verbal “stop” order from the experiment
assistant in the vehicle. After receiving the order, the
participants must brake to a complete stop. The participants
were told that this “stop” order was to mimic emergency
braking scenarios such as a sudden jaywalker cutting in front or
almost hitting another car. The urgent and compact “stop”
order forced drivers to brake to the best of their ability as soon
as possible. A break of approximately 5 minutes was designed
between the tests of the two driving situations to eliminate
successive effects.

3.2 Participants

As listed in Table 1, 17 participants between the age of 20 and
59 who hold a license ranging from less than 1 year to 20 years
were recruited. The participants come from different
occupational backgrounds and are overall in good health status
(e.g. free from drowsiness, illness and drunkenness). Prior to
the experiment, verbal consent for voluntary participation was
received from all participants. The basic information of the
participants including age, gender, driving experience and
education level (e.g. high school degree, university degree and
graduate degree) was collected as well. After the experiment,
each participant was compensated 50 RMB for their
participations. The 17 participants include 3 females and 14
males, with the educational attainments ranging from middle
school to PhD degree. The average age was 33.2years with a
standard deviation (SD) of 10.8 and the average license-hold
was 7.8 years with a SD of 7.1. The mean driving experience is
6.4 years with a SD of 7.6. To be more generally representative,
the experiment attempted to balance the demographics of the
participant samples as much as possible.

3.3 Data collection
The collected data during the experiments mainly include the
eight-channel physiological signals (i.e. ECG, EMG, FSR,
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Table 1 Driver demographics summary
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Driver ID Gender Educational attainment Age License-hold year Estimated actual driving year
1 Female > bachelor's degree 33 9 2
2 Female > bachelor's degree 32 5 5
3 Female > bachelor’s degree 37 0.5 0.1
4 Male < bachelor's degree 40 7 5
5 Male < bachelor's degree 37 4 4
6 Male > bachelor's degree 51 18 18
7 Male < bachelor's degree 59 22 22
8 Male > bachelor's degree 24 6 1
9 Male > bachelor’s degree 45 20 20

10 Male < bachelor's degree 36 17 17

1 Male < bachelor's degree 24 5 5

12 Male > bachelor's degree 25 4 1

13 Male > bachelor's degree 25 0.1 0.1

14 Male > bachelor’s degree 24 4 2

15 Male > bachelor’s degree 29 7 4

16 Male > bachelor's degree 24 3 3

17 Male < bachelor's degree 20 0.3 0.1

EDA, PZT, TEP, ACC and EEG). The characteristic
parameters were mainly focused on time-domain features (e.g.
the response of the signal) and intensity-domain features (e.g.
the amplitude of the signal). Note that the only difference of
data recording between the two driving situations (regular vs
distracted driving) is the need to save the game results for the
distracted driving. The data acquisition system is set with a
resolution of 16bits and a sampling rate of 1,000 Hz for all
channels. In addition, the vehicle trajectory, including latitude,
longitude, instantaneous speed and time stamps, were also
recorded every 0.1seconds using a GPS mobile application
software. Physiological signal and vehicle trajectory data were
synchronized in time series.

4. Data process and analysis methods

4.1 Vehicular speed profiles

The speed profile data (SPD) before and after the “stop” order
(i.e. stimuli) were extracted from the originally recorded vehicle
trajectory data set. The timestamp when the stop order is issued

Figure 5 Examples of vehicle speed profiles for each participant

is set to zero (i.e. benchmark), and the time prior to the stop
event is labeled as negative. As shown in Figure 5, the trajectory
data of all stop events are normalized, in time, so that all speed
profiles are in a time window of negative 4—7 seconds.

Three parameters were used to characterize the SPD:

1 initial speed, obtained by averaging the speeds prior to the
event (i.e. ¢ < 0 in Figure 5);

2 deceleration rate, obtained by calculating the slope of the
linear part of the speed reduction; and

3 reaction time, obtained by measuring the duration from

the start of the event (z = 0) to the time when the speed
reduced to 10% of the initial speed.

SPD of the first three participants is not included as partial data
of the three participants are missing. For the sake of robustness,
the full data from 14 participants are analyzed.

4.2 Physiological signal data
Figure 6 provides examples of different physiological signal
data in the regular driving (in grey) and distracted driving (in
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Figure 6 Physiological signal data in distracted and regular driving situations (Driver ID = 13)
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red) situations. By manually checking the pattern of the data,
TMP and EEG signal data were not distinctive or informative
parameters. Therefore, these two signals were not interpreted
in the following study.

As shown in Figure 6, each profile represents a signal data
change over time prior to and post to a stop event. Each
participant received at least three “stop” orders in each driving
situation. The average performance of the “stop” even was used
for analysis to reduce the random error. Figure 7 summarizes

Figure 7 Characteristic parameters of each physiological signal

the characteristics of each physiological signal. The parameters
to characterize different physiological signals are related to the
amplitude and time of critical changes. The unit of amplitude
corresponds to each physiological signal and the units of all
time-related parameters (e.g. timestamp, duration and interval)
are in seconds. These parameters can be either extracted
directly from the signal data, as illustrated in the last column of
Figure 7, or calculated from the parameters obtained. A
preliminary data cleaning process was conducted to delete
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some outliers or incomplete data. For example, the electrode of
a specific sensor may be off from the participant accidentally
during the test, resulting in no change or illegible change in the
obtained signal data. Those signal data were excluded from the
analysis result presented in Section 4.3.

4.3 Second-task performances

The participants’ distraction level is quantified by their
completion degree of the designed mobile game. In other
words, it is hypothesized that the better the game is completed,
the higher the mental load is required, and thus the higher the
distraction level is reached. Conversely, it is hypothesized that a
worse game completion refers to a lower distraction level, as
participants assign more attention to the primary driving task
rather than the secondary nondriving task (i.e. mobile game).
Examples of game snapshots in low, medium and high
distraction levels are shown in Figure 8. The game score is
calculated from the “gain-points” and “lose-points” for each
participant. With a total of 618 digital pixel cells in each
snapshot in Figure 8, the gain point is counted when a cell is
correctly colored, while incorrect coloring results in double lose
points. The scoring rate (SR) is calculated as the quotient of the

Volume 5 - Number 3 - 2022 - 270-282

total scores and the game duration is adopted to measure the
game scoring performance, as shown in Table 2.

In Table 2, the distraction SR of 16 participants is
investigated considering different durations of the finishing
game (due to the lack of data, participant Driver ID = 3 was not
included). The scoring rate is divided into three levels to reflect
the distraction load of a driver: low (SR<0.5), medium
(0.5 <SR < 1) and high (SR> 1).

5. Results and discussions

5.1 Speed profile analysis result

The results of the speed profile data analysis are summarized in
Table 3. It was found that, on average, the initial speed of
distracted driving (31 km/h) is lower than the initial speed of
regular driving (36.5 km/h), and the difference is significant
(p = 0.002). This was not surprising, in the literature, distracted
drivers have been repeatedly reported to compensate for the
risk of distraction by reducing their driving speeds (Caird ez al.,
2008). The difference in average deceleration rate for the two
driving situations was also significant (p = 0.004), noting that a
harder brake was taken when an emergency “stop” was

Figure 8 Snapshots of driver's digital coloring task indicating high (left), medium (middle) and low (right) for Driver ID =1, 8 and 11, respectively

Table 2 Distraction load summary

Driver ID Duration (s) Gain (pts) Lose (pts) Total scoring rate SR (pts/s) Distraction load level

1 272 341 8 1.19 high

2 310 361 8 1.1 high

4 292 159 7 0.49 low

5 274 324 3 1.16 high

6 196 249 10 1.17 high

7 326 152 21 0.34 low

8 187 141 4 0.71 medium

9 176 239 1 1.35 high
10 354 269 12 0.69 medium
1 260 60 19 0.08 low
12 219 177 1 0.80 medium
13 338 247 8 0.68 medium
14 250 273 13 0.99 medium
15 261 159 10 0.53 medium
16 202 254 12 1.14 high
17 365 154 1 0.36 low
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Table 3 Characteristic parameters of SPD

Volume 5 - Number 3 - 2022 - 270-282

Initial speed (km/h)

Avg. deceleration rate (m/s?)

Response time (s)

Driver ID Distracted Regular Distracted Regular Distracted Regular

4 34.8 403 -2.80 -3.24 13 24

5 36.3 446 -1.54 -3.34 2 2.9

6 33.9 32.7 -1.77 -3.26 2.1 1.1

7 29.0 48.0 -0.83 -3.17 1 03

8 271.7 34.1 -2.02 -2.07 2.1 1.4

9 36.5 38.5 -3.79 -2.59 1 1.4
10 28.4 29.6 -2.25 -2.83 14 1.1

1 32.1 39.8 -2.79 -4.25 1.8 1.5
12 22.0 322 -1.71 -3.36 22 1.1

13 27.9 30.3 -2.14 -2.24 2.6 2

14 27.8 34.9 -2.19 -2.93 1.4 22
15 383 40.6 -1.44 -3.23 1.2 3.1

16 36.0 40.1 -1.83 -2.44 2.6 2.7
17 239 24.6 -2.22 -2.42 2.6 1.5
Avg. 31.0 36.5 -2.09 -2.96 1.81 1.76
Std. 5.1 6.3 0.71 0.57 0.59 0.81
P-value 0.002* 0.004* 0.866

Note: *Means significance at the confidence level of 99%
required in regular driving (avg. deceleration = —2.96 m/s?) as response, it is not significant (p = 0.542). This is because the

compared to the distracted driving (avg. deceleration =
—2.09m/s%). This may indicate the distracted drivers did not
fully brake. The study hypothesized that distracted drivers take
a longer time on average to respond to the “stop” order.
However, it was not confirmed statistically in the data. It should
be noted that due to the inherent accuracy of this method, the
reaction time obtained by the SPD may not necessarily reflect
the actual difference. The following physiological data may
provide a better solution to this problem.

5.2 Physiological factor analysis and results

Table 4 provides the statistics of the physiological signal data
(i.e. FSR, ACC, EMG, PZT, ECG, ECG and EDA), including
the average values and the standard deviations in the
parentheses. A paired two-tailed rtest with a p-value is
performed to test if there are significant differences in the
investigated indicators between distracted and regular driving.
The p-value is marked in bold red when the test is rejected at
the confidence level of 0.05, and in bold black when the p-value
is marginally significant (at the confidence level 0of 0.1).

5.2.1 Kinematic signals — accelerometer and force-sensing resistor

In Table 4 (1), ACC data find two significant parameters,
namely the maximum amplitude of the deceleration and the
rise time in distracted driving. These two parameters
correspond to the significance of the average deceleration rate.
As for the response time, there was no significant evidence
found in ACC signal data. In Table 4 (2), the intensity of the
brake force, extracted from the FSR signal, is prominent with
an average maximum of 0.297 and 0.262 kg for distracted
driving and regular driving, respectively. Three key periods:
response time, rise time and recovery time, were measured and
the rise time was found significant in distracted driving as
compared to regular driving (p = 0.006). Although the
amplitude of the FSR may be remarkable for the intensity of the
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sensor head attached to the brake pedal is tiny and thin, so it is
easy to miss the partial braking force of the foot on the pedal. It
is found in the FSR data that the amplitudes differ greatly from
each other. To interpret the kinematics of the vehicle,
distracted drivers tend to respond slower, pressed the brakes
harder and had shorter times to maximum brake pedal
depression than regular drivers. This may partially be because
distracted drivers who immediately return to execute the stop
maneuver, are not quite sure about the external condition and
thus drivers are not able to sharply brake.

5.2.2 Physiological signals — electromyography and electrodermal
activiry

Evidence can also be found from the EMG signal data in
Table 4 (3) to indicate the significance of the rise time in
distracted driving (p = 0.027). EMG finds marginal evidence
for the significance of the response time (p = 0.057). Therefore,
detecting the physiological signal of the calf muscles during
braking is more powerful than catching the force applied on the
brake pedal (i.e. FSR) to distinguish between distracted driving
and regular driving. It can be found in Table 4 (4) that, on
average, the initial EDA level of distracted drivers is
significantly higher than that of regular drivers (p-value =
0.005). When the event of an emergency stop is activated, skin
conductance responds to it clearly, a drastic increase of the max
amplitude of the skin conductance (i.e. the third column vs the
second column) is observed. There may be marginal evidence
for the difference in skin conductance response time (p =
0.070) and rise time (p = 0.067), indicating that the distracted
driver may take longer time to react to the emergency stop than
the regular drivers. The current study found that drivers’ mean
response time to an expected stop event was 0.55 seconds.
These response times obtained from the physiological signals
are far less than the reported brake response time, which is
1.5seconds (Green, 2000) as generally recommended in the
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Table 4 Summary of the physiological signal data
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(1) ACC Initial acceleration Max amplitude Response time Rise time Recovery time
N 17 17 17 17 17
Distracted 0.212 (0.087) —0.314(0.188) 0.725(0.134) 0.663 (0.322) 1.741 (0.704)
Regular 0.222 (0.075) —0.372(0.162) 0.679 (0.168) 0.894 (0.369) 1.623 (0.639)
p-value 0.339 0.002 0.115 0.021 0.322

(2) FSR Max amplitude Response time Rise time Recovery time
N 16 16 16
Distracted 0.297(0.164) 0.621(0.132) 0.322(0.141) 1.496 (0.987)
Regular 0.262 (0.189) 0.561 (0.134) 0.487(0.214) 1.546 (0.869)
p-value 0.542 0.112 0.006 0.738

(3) EMG Max amplitude Time at max amplitude Response time Rise time

N 16 16 16 16
Distracted 0.204 (0.136) 0.510(0.181) 0.399 (0.135) 0.111 (0.068)
Regular 0.205 (0.123) 0.495 (0.241) 0.310(0.151) 0.186 (0.122)
p-value 0.944 0.823 0.057 0.027

(4) EDA Initial EDA level Max amplitude Response time Rise time 50% Recovery time
N 15 12 12 12 10
Distracted 12.853 (5.133) 15.319 (5.095) 1.815 (0.716) 1.644 (0.736) 1.898 (0.884)
Regular 11.229 (4.989) 14.635 (5.431) 1.513(0.610) 2.089 (0.736) 1.466 (0.796)
p-value 0.005 0.401 0.070 0.067 0.201

(5) PZT Initial respiration level Max amplitude Root mean square of amplitudes ~ Avg. breath-to-breath interval Avg. RMSSD

N 17 17

17 17 17

Distracted 1.779 (0.270) 1.936 (0.327) 1.785(0.272) 2.082 (0.481) 2.242 (0.517)

Regular 1.614(0.233) 1.810 (0.369) 1.624 (0.240) 2.215 (0.408) 2.396 (0.494)

p-value 0.011 0.085 0.013 0.345 0.323

(6) ECG Avg. beat-to-beat interval Avg. beat-to-beat interval Avg. RMSSD Avg. RMSSD
prior event post event prior event post event

N 15 15 15 15

Distracted 0.748 (0.115) 0.726 (0.121) 0.044 (0.047) 0.145(0.123)

Regular 0.753(0.103) 0.760 (0.099) 0.048 (0.061) 0.096 (0.112)

p-value 0.646 0.041 0.851 0.009

literature. This is not surprising as physiological signals are PPIﬁ ZT|ECG _ Pf le\fCG — PPATIECG 1)

always the first (among other measures) to react after receiving ' ’

an external stimulus, and it responds even faster at higher

urgencies (Markkula ez al., 2016). The rise time reflects the Freqf’\h’ — A]M);N‘ 2)

speed at which the physiological signal reaches its maximum 2 PPI’!’ZT\ECG

amplitude, i.e. the response intensity. The results show that
distracted driving needs less time to reach its maximum
compared to regular driving. This is interesting because
distracted drivers can be described as “delayed but hurry and
intensive responders.”

5.2.3 Periodic signals — piezoelectric respiration and
electrocardiography.

For periodic signals such as PZT and ECG in Table 4 (5) and
(6), the time intervals between consecutive two peaks were
measured (i.e. breath-to-breath and beat-to-beat), as shown in
equation (1). The reciprocal of the average peak-peak intervals,
i.e. the frequency, is the breath rate or heart rate, as calculated
by equation (2). The breath rate variability or heart rate
variability can be indicated using the root mean square of
successive differences (RMSSD) of the peak-peak intervals, as
can be found in equation (3).
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=1

1 N,—1 2
brolhro __ PZT|ECG _ PZT\ECG)
RMSSD[™™ =\ | (; (PPI,. “ PPI )
3
where:
PPI = peak-peak intervals measured from PZT or ECG
signal;
Freq = frequency of breath rate (br, unit: breath/min) or

heart rate (hr, unit: beat/min) depending on what
physiological signal is analyzed;

RMSSD = root mean square of successive differences for
breath rate variability (brv, unit: sec) or heart rate
variability (hrv, unit: sec) depending on what
physiological signal is analyzed;
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N, =number of the total intervals in the predefined
study period ;
) =interval index,7=1,2,...,N— 1;
r =peakindex,r=1,2,...,N + 1;and
t = the predefined study time window.

Some cognitive states may be inferred from respiration
amplitude responses after external events (Castegnetti, 2017).
In the PZT signal data, the respiration amplitude is significant
prior to the event (p = 0.011) and is marginal significant post
the “stop” event (p = 0.085). The heart rate variability indicates
mental stress and anxiety corresponding to physiological
changes in the autonomic nervous systems. When the
emergency stop is required, both heart rate (i.e. RR interval)
and heart rate variability (i.e. RMSSD) are significant in
distracted driving. Figure 9 shows the prior-post comparison
test within one driving situation. Dashed lines with p-values are
used to indicate the z-test result. Each bar is marked with the
mean in the center and the 95% confidence intervals in the
lower and upper boundaries.

Figure 9(a) shows that heart rate has no difference whether
drivers are distracted or not (p = 0.495) prior to the activation of
the stop event. However, the heart rate of distracted drivers
increases marginally significantly (p = 0.096) than that of regular
driving after the stop event. These marginal effects were further
demonstrated in Figure 9(b) to be significant in heart rate
variability (p = 0.006). This is because heart rate variability can
identify minor differences, and thus is more informative (Sacha,
2014). Results show that the heart rate variabilities in distracted
driving and regular driving increased after the event (p = 0.006 and
p = 0.059). The difference in the increase is significantly different
as distracted driving gains more variability (p = 0.009).

Both novice drivers (ID = 13, 17) and experienced drivers
(ID =17, 9) have a low level of distraction (i.e. game score),
implying that comparatively less attention is assigned to the
secondary task. This may be due to these reasons:

« novice drivers are inexperienced in driving and have no
extra ability to take the additional nondriving tasks;

« experienced drivers are conservative in safety driving; and

« those experienced drivers are aged 40-60 years, and are
relatively unskilled about smartphone games compared to
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the generation (aged 20-40 years) that grew up with
smartphones.

Driver’s age and experience were reported to affect the
emergency braking (LLoeb ez al., 2015), especially on the brake
response time and intensity. As can be found in Figure 10(a),
the results in this study corroborated the findings in previous
studies (LLoeb ez al., 2015). Figure 10(b) shows that the driver’s
rise time decreases with the increase of either the age or driving
experience. The results indicated that a less intense response is
conducted by elder drivers as well as experienced drivers.

6. Conclusion and discussions

This paper outlines an explanatory framework for emergency
brakes in distracted driving situations, characterized by driver
demographics, vehicle kinematics and more importantly,
physiological signals. This study extends the literature findings on
the psychophysiological measures of distracted driving when an
emergency stop is required. In automated driving mode, drivers do
not need to monitor the environment all the time and can engage
in their secondary tasks. When the autonomous system detects an
emergency situation that requires the driver to take over, the brake
features in this study work as a preliminary study. As take-over
quality deteriorated for distracted drivers (Zeeb et al., 2016), this
study underlined how quick drivers could respond to the “take
over” notice (released by the autonomous driving system) and
resume vehicle control. Eventually, the proposed framework may
serve to guide the next step of this study on the potential causal role
of distraction load when drivers are in autonomous vehicles.
Recently, various forms of wearable physiological monitoring
devices are commercially available. Therefore, it is possible to
get the physiological signals of drivers to improve the ADAS.
The driver assistance system would moderate the response time
when distracted (Zeeb er al., 2016), and it would provide a
reference for monitoring the physiological state (Hamdani and
Fernando, 2015; Vetter er al., 2017). The driver state could
provide information to a system that decides the way to adapt
the vehicle based on the demands of the task relative to the
distraction state (NHTSA, the National Highway Traffic
Safety Administration, 2004). The particularity of this

Figure 9 Heart rate comparison (a) and heart rate variability comparison (b) between distracted driving (i.e. dis) and regular driving (i.e. reg) prior to

and post to the event, respectively
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Figure 10 Driver's age and experience (Driver IDs are labeled next to
the data points)
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Notes: (a) Level of distraction versus drivers’ age (left) and
driving experience (right); (b) rise time from FSR signal versus
driver’s age (left) and driving experience (right)

experiment is the simplification of the driver’s response to the
emergency stop event. In most of the previous distraction
experiments, the driver first perceives an event, decides and
produces a response, i.e. the classical perceive—decide-response
mode. In this study, the driver was informed of the emergency
brake and performed it immediately after a quick external
condition check. In this study, however, the experiment assistant
acted as the perceiver and the decision-maker of the event. The
driver’s physiological states can be monitored so to leverage
technology to improve road safety, such as to assist in driver
distraction detection and warning system for crash avoidance.
This study demonstrates that the drivers are physiologically
reactive to urgent stimuli, especially drivers under distraction. It
provides a viable means of detecting and distinguishing distracted
driving status. The main findings are summarized as below.

Before the emergency stop event, distracted drivers run with
a relatively low speed (SPD, p = 0.002) and are generally more
nervous (EDA, p = 0.005; PZT, p = 0.011). When responding
to the stop request, distracted drivers are delayed in perception
(EMG, p = 0.057; EDA, p = 0.070), and hurriedly reached to
the maximum intensity response indicated by the maximum
amplitude (PZT, p = 0.085; ECG, p = 0.041) and the rise time
(ACC, 0.021; FSR, p = 0.006; EMG, p = 0.027; EDA, p =
0.067) and do not get the full brake (SPD, p = 0.004; ACC,
p =0.002). These lead to an escalated stress and anxiety (PZT,
p = 0.013; ECG, p = 0.009). All these results help to
characterize and differentiate the distracted drivers.

When the response time collection method moves from
vehicle kinematics (i.e. SPD, FSR, ACC) to physiological
signal (i.e. EMG, EDA), more clear evidence can be found to
distinguish a distracted driving state. The order of the response
time: EMG < FSR < ACC < SPD makes good sense as the
driver firstly lifted his or her right leg (EMG), pressed the brake
pedal (FSR), the vehicle decelerated (ACC) and then captured
by the trajectory device (SPD). The distracted drivers are
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physiologically more reactive to the emergency stop stimuli,
exhibiting significant increases in the intensity and time of the
response. Among all the physiological parameters tested in this
study, response time and rise time are sensitive and
recommended in distracted driving studies. Although
amplitude is fundamental in reflecting the reaction intensity, it
should be cautious as it may require a more accurate data
acquisition system with multiple channels for each signal.

One of the limitations of the study is the small sample size.
The results, therefore, should be interpreted with caution and
wait for repetition to arrive at a firm conclusion. A repeated
measure of multilevel modeling that adopts the driver-nested
data structure is suggested in the future study when the data
sample is enlarged to capture the within-subject variability. The
design of the experiment could be further improved as well. For
example, the order of the two driving tasks carried out by the
participants may be reversed to help eliminate biases caused by
the previous driving experience. What’s more, the accuracy of
the measurements was dependent on the reliability of the
assistant’s action time. Although the body sensor system was
sensitive to many signals in a preexperimental test (e.g. deep
breathing, muscle contracting and sudden frightening), its
accuracy has not been validated, especially given driving is a
complicated process that many factors may be out of control.
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