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Abstract
Purpose – The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with
dynamic obstacles during parallel parking.
Design/methodology/approach – To deal with dynamic obstacles for autonomous vehicles during parking, a long- and short-term mixed
trajectory planning algorithm is proposed in this paper. In long term, considering obstacle behavior, A-star algorithm was improved by RS curve and
potential function via spatio-temporal map to obtain a safe and efficient initial trajectory. In short term, this paper proposes a nonlinear model
predictive control trajectory optimizer to smooth and adjust the trajectory online based on the vehicle kinematic model. Moreover, the proposed
method is simulated and verified in four common dynamic parking scenarios by ACADO Toolkit and QPOASE solver.
Findings – Compared with the spline optimization method, the results show that the proposed method can generate efficient obstacle avoidance
strategies, safe parking trajectories and control parameters such as the front wheel angle and velocity in high-efficient central processing units.
Originality/value – It is aimed at improving the robustness of automatic parking system and providing a reference for decision-making in a
dynamic environment.
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1. Introduction

With the combination of big data cloud and artificial
intelligence technology in the automobile industry,
autonomous driving technology is penetrated in more
application scenarios (Khayyam et al., 2020). As a relatively
comprehensive subsystem of advanced driver assistance
systems, the automatic parking system is widely loved by users
for its comfort and safety. To promote the implementation of
autonomous vehicles (AVs) and reduce the burdens faced by
novice drivers in complex parking environments, researchers
have conducted a series of studies on how to improve the
robustness and safety of trajectory planners. In a broad sense,
current methods include the path-velocity decomposition
(PVD) approach and the directly planning approach.
In terms of the PVD approach, these trajectory planners

consist of two periods. One period is planning path in X-Y
plane. For parking in narrow spaces, Zhou et al. (2020b)

designed 24 kinds of parking paths, including straight lines and
curves. To plan a collision-free path on unstructured road, the
sample-and-search-basedmethods were explored based on grid
map, such as RRT (Han et al., 2011; Li et al., 2019a, b),
Dijkstra (Zhang and Zhao, 2014) and A-star (Cheng et al.,
2014). However, due to the limits of poor smoothness and
higher solving precision, Tang et al. (2018) used the B-spline
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curve to smooth path while Jhang and Lian (2020) designed a
fast exploration random tree (called Bi-RRT�) to plan a
collision-free path rapidly.
Velocity planning, the other period, refers to the

pathplanning algorithm of Baidu Apollo, Zhou et al. (2020a)
explored spline interpolation method to achieve a smooth
velocity profile along the collision-free path planned in
distance-time (S-T) space. Though the decomposition
problem is easier than directly handling, the results of path
planning and velocity planning are seldom optimal
simultaneously, and the control quantity is not feasible in many
narrow channels.
As to the directly planning approach, Qian et al. (2019,

2020) and Gen et al. (2019) adopted the pseudo-spectral
method to optimize the autonomous vehicle’s path, speed and
front wheel angle by establishing starting point constraint,
target point constraint, path constraint, kinematic differential
equation and minimal time objective function. It is high
accuracy but time-consuming. Thus, to shorten calculation
time, Li et al. (2016, 2020) proposed the A-star algorithm and
safe channel (STC) method to simplify solution regions and
constraints before applying the simultaneous strategy.
However, the second-based central processing unit calculation
scale still fails to meet the real-time requirements in dynamic
environment (Sheng et al., 2021).
In practice, due to environmental uncertainty, automatic

parking system is not absolutely static such as vehicle–vehicle
interaction and pedestrian–vehicle interaction in some roadside
parking and large parking lots. Based on safe distance
requirements, Xie (2020) combined A-star and Reeds-Shepp
to re-plan vehicle route but failed to take dynamic obstacles
during parking process or near parking slot into consideration.
Aiming to protect pedestrians from collisions in parking space,
Hu et al. (2020) firstly combined constant velocity offset curves
and sine curves to create the initial parking trajectory, and then
adjusted parking speed on grounds of model predictive
controller to keep a safe distance from pedestrians.
Nevertheless, it was only suitable for large parking scenes or the
situations in which dynamic obstacles appear behind the
vehicles. Meanwhile, based on expert parking experience,
obstacle orientation and target orientation information,
Nakrani and Joshi (2021) presented a novel fuzzy-based
obstacle avoidance controller to handle the obstacle avoidance
task by changing the direction without losing sight of the
primary goal of parallel parking. Although the parking task was
highly completed and computation was also fast, the impact of
obstacle intention on the parking task was ignored.
In conclusion, existing automatic parking trajectory planning

studies seldom concentrate on dynamic obstacles or the link
between path re-planning and waiting strategies. However,
intelligent drivers can adjust the parking path and speed at the
same time. Therefore, to balance the advantages of both
strategies in a dynamic parking environment, this paper designs
a novel trajectory planner, namely, a long- and short-term
mixed trajectory planner. As shown in Figure 1, with a view to
obstacles’ long-term behavior, A-star algorithm is improved to
search for a global optimal maneuver by establishing a spatio-
temporal map, RS curve and potential function. Then, on the
basis of short-term predictions of obstacles’ trajectory,
nonlinear model predictive control (NMPC) is applied to

further optimize the initial maneuvers with vehicle kinematic
constraints to get a safer, more feasible and efficient trajectory.
The remainder of this paper is organized as follows.

Obstacles and the ego vehicle are graphically described on
spatio-temporal map in Section 2. By combining safe and
efficient evaluation functions, a long-term trajectory planner
based on improved A-star is specified in Section 3. A short-
term trajectory planner based on NMPC to smooth or adjust
initial trajectory is presented in Section 4. In Section 5, the
performance of the proposedmethod is discussed by simulating
in four common dynamic parking scenarios and comparing
with spline local optimization. In the end, we close the paper
with conclusion in Section 6.

2. 4D Spatio-temporal map and vehicles model

There are many kinds of maps used to represent the driving
environment of automobiles, such as topological map,
geometric feature map and grid map. Among them, the grid
map is widely used in navigation and the obstacle avoidance
tasks. This descriptionmethod uses grids to divide the planning
space and increases the value of a specific grid to describe the
threats posed by obstacles. Like the X-Y plane coordinate
system in Figure 2, the 2D spatial grid map was set up by
dividing driving environment into a finite number of identical
squares. On the grid map, the resolution information is
determined by the size of the square, and the position
information is provided by the geometric center coordinates of
each grid.
Assuming that the static obstacles’ position is known before

parking and that the trajectories of dynamic obstacles can be
obtained by prediction module. The key of creating X-Y-T
spatio-temporal map is to expand 2D spatial grid map along the
time axis to describe the position and motion of the ego vehicle
and obstacles (Xin, 2021). For example, the trajectories of
static barriers, dynamic obstacles and the ego vehicle are
represented by the green, red and blue parts, correspondingly
in Figure 2.
Undeniably, the ego vehicle is not a particle. In order to

receive a detailed trajectory, it is necessary to further
depict the vehicle position. On the basis of the vehicle

Figure 1 Framework of long- and short-term mixed trajectory planner
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dimensions and Ackerman steering constraints, the
rectangular vehicle CEDF can be equivalent to line
segment AB (Li, 2021), as presented in Figure 3, where, v
is the speed of the ego AV, d is its front wheel angle and u
is its heading angle.
The blue part in Figure 3 is safe equivalent circles of

automobile, which is used to describe the ego AV’s shape with
radius R. With the mid-point of rear wheel axis (x, y) as
reference point, the relationship between the bounding box and
safe equivalent circles can be expressed by the following
equations:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1 lf 1 lrð Þ=4ð Þ2 1 W=2ð Þ2

q
xf ¼ x1 0:75 L1 lf 1 lrð Þ � lrð Þ � cosu
yf ¼ y1 0:75 L1 lf 1 lrð Þ � lrð Þ � sinu
xr ¼ x1 0:25 L1 lf 1 lrð Þ � lrð Þ � cosu
yr ¼ y1 0:25 L1 lf 1 lrð Þ � lrð Þ � sinu
xC ¼ x1 L1 lfð Þ � cosu � W=2ð Þ � sinu
yC ¼ y1 L1 lfð Þ � sinu 1 W=2ð Þ � cosu
xD ¼ x1 L1 lfð Þ � cosu 1 W=2ð Þ � sinu
yD ¼ y1 L1 lfð Þ � sinu � W=2ð Þ � cosu
xE ¼ x-lr � cosu 1 W=2ð Þ � sinu
yE ¼ y� lr � sinu � W=2ð Þ � cosu
xF ¼ x-lr � cosu � W=2ð Þ � sinu
yF ¼ y� lr � sinu 1 W=2ð Þ � cosu

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)

where xf, yf, xr, yr, xC, yC, xD, yD, xE, yE, xF, yF are coordinates of
the line segment points A, B and the four corner points C, D, E,
F alongX- andY-axes.L andW are the ego vehicle’s wheelbase
and width. lf and lr denote the length of its front overhang and
rear overhang, respectively.
In X-Y coordinates, the ego AV moves continuously under

vehicle kinematic constraints. Combined with Newton’s
second law, acceleration and angular velocity of the front wheel
[a, wd ] are set as control variables U(t), while [x, y, u , v, d ] are
defined as state variables X(t). Without regard to the impact of
lateral acceleration or air resistance at low speed, kinematic
model of a front-steering automobile can be developed through
differential equation:

_X tð Þ ¼ f t;X tð Þ;U tð Þð Þ ¼

_x

_y
_u

_v
_d

2
66666664

3
77777775
¼

v � cosu
v � sinu
vtand =L

a

wd

2
66666664

3
77777775

(2)

where both the state variablesX(t) and the control variablesU(t) are
functions of time. Therefore, the ego AV’s trajectory is composed of
four dimensions: coordinates (x, y), heading u and time t.

3. Long-termmaneuver generation

After creating the 4D spatio-temporal map, we proposed a
long-term trajectory planning with the aim of searching for
optimal maneuvers that determine whether the speed or
steering angle of the ego AV should be adjusted. Compared
with other search algorithms, the A-star algorithm is extended
based on the idea of Dijkstra algorithm, and is popular in path
planning for its heuristic search strategy and higher path search
(Bai, 2020). However, in practical applications, search
algorithms need to consider not only the calculation workload
and accuracy, but also the feasibility and efficiency of planned
trajectories. Consequently, this section mainly focuses on
improving the A-star algorithm in terms of the configuration of
expansion nodes and heuristic functions.

Figure 3 Vehicle model

Figure 2 4D Spatio-temporal map
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3.1 Child node configuration
The traditional A-star algorithm expands eight nodes or six
nodes on 2D grid maps around the parent node. Given the ego
AV’s position [x(ti), y(ti), u (ti)] at time ti, if directly searching
for trajectory on 4D spatio-temporal map mentioned above,
problems including high dimensionality, excess child nodes,
infeasible nodes and discontinuous nodes will appear.
Note that, set the velocity of front-wheel steer angle wd and

the acceleration a as the action space, and take the discrete time
Dt as a step size to configure the extended nodes of current grid
as follows:

ti1 1 ¼ ti 1Dt

v ti1 1ð Þ¼ v tið Þ1 a � Dt
d ti1 1ð Þ¼d tið Þ1wd � Dt
u ti1 1ð Þ ¼ u tið Þ1 v ti1 1ð Þ � tan d ti1 1ð Þ� � � Dt=L
x ti1 1ð Þ ¼ x tið Þ1 v ti1 1ð Þ � cos u ti1 1ð Þð Þ � Dt
y ti1 1ð Þ ¼ y tið Þ1 v ti1 1ð Þ � sin u ti1 1ð Þð Þ � Dt
vmin � v ti1 1ð Þ<¼ vmax

dmin � d ti1 1ð Þ<¼dmax

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(3)

where [vmin, vmax] and [dmin, dmax] are allowable range of
vehicle velocity and the front-wheel steer angle,
respectively.
Controlling the child nodes position based on equation (3)

not only denotes the vehicle kinematic characteristics, but also
reduces the expansion range and dimension. Besides, it also
widens the requirements for the child nodes position to allow
child nodes to be free from the grid center.

3.2 Evaluation function
The evaluation function of the A-star algorithm is
composed of two parts (Bai, 2020). One is the accumulated
cost that caused by moving from the initial point to the
current node, namely, the weighted sum of three terms:
length cost S, safety cost APF and comfort cost C. The
other is the estimated cost of moving to parking slot,
namely, the heuristic cost h . Here, we take the nth child
node as an example, wherein, n [ N� & n <= 7, and the
overall cost function F can be defined as follows:

F n; tið Þ ¼ wSS n; tið Þ1wAPFAPF n; tið Þ1wcC n; tið Þ1wh h n; tið Þ
(4)

where wS, wh, wC, wAPF are the weight coefficients
corresponding to four indicators.
To avoid unnecessary detours, the length cost S

represents the shortest distance in travelling. At time ti, this
cost of child node n is easy to be measured by Euclidean
distance:

S n; tið Þ ¼ kx n; tið Þ � x tið Þ; y n; tið Þ � y tið Þk2 (5)

where x(ti), y(ti), x(n, ti), y(n, ti) are the position information of
current node and its nth child node.
Because most dynamic obstacles in parking scenarios are

vulnerable road users, the ego vehicle should not only
search for the shortest path but also need to consider the
distance from these obstacles. The safety cost APF is
virtual potential field force that guides the ego AV away
from obstacles. For the same dynamic obstacle may has

different energies under different circumstances, in the
light of the potential field approach, taking the information
such as the moving direction, velocity of dynamic obstacles
into account (Want et al., 2021), the driving safety field
Pj(x, y) of dynamic obstacle j can be established as:

mj ¼ x� x j
obs; y� y j

obs

� �
; j > 0; j 2 N

Uj x; yð Þ ¼ �
x� x j

obs

� �2

2K2
j

v2xj 1s o

� ��
y� y j

obs

� �2

2K2
j

v2xj 1s o

� �
0
B@

1
CA

Pj x; yð Þ ¼ MjUj x; yð Þexp cosu jð Þmj=jmj j

8>>>>>>>><
>>>>>>>>:

(6)

where, x j
obs; y

j
obs; vxj ; vyj are the position and velocity

information of dynamic obstacle j; s o is an allowable distance
between the ego vehicle and obstacles. Kj and Mj reflect the
dynamic obstacle’s size and type.
If there are two dynamic obstacles, one is located at

(30m, �6 m) with M1 = 50, vx1 = 1m/s, vy1 = 1m/s, K1 = 1.
The other is at position (50m,�2 m) withM2 = 28, vx1 = 5m/s,
vy1 = 0m/s, K1 = 2. When s o = 1m, the risk field can be
assessed by Figure 4. Around the obstacle, the closer the ego
AV gets to the obstacle’s velocity direction and position, the
more dangerous it will be.
Regarding the stationary state of the ego AV as a safe state,

this article uses the driving safety field of dynamic obstacles to
improve the safety cost functionAPF by:

Rj
o ¼ R1Rj

obs

sf n; tið Þ¼ xf n; tið Þ � xjobs ti 1Dtð Þ; yf n; tið Þ � yjobs ti 1Dtð Þ
� �

sr n; tið Þ ¼ xf n; tið Þ � xjobs ti 1Dtð Þ; yf n; tið Þ � yjobs ti 1Dtð Þ
� �

dis n; tið Þ ¼ min ksf n; tið Þk2; ksr n; tið Þk2
� �� Rj

o

APF n; tið Þ ¼
0 if dis n; tið Þ � 10jjv n; tið Þ ¼ 0

XNJ

j¼0

Pj x n; tið Þ; y n; tið Þð Þ else

8>>><
>>>:

1 � n � 7; n 2 N�;NJ 2 N; j � 0; j 2 N

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

(7)

where ksf(n, ti)k2 and ksr(n, ti)k2 denote the distances between
obstacles and two safe equivalent circles, respectively. dis(n, ti)
is the shortest one of them. Rj

obs is the radius of jth dynamic
obstacle’s equivalent circle. NJ is the number of dynamic
obstacles. ti 1 Dt is the time of extended child nodes, when the
parent node is at time ti.

Figure 4 Risk assessment of dynamic obstacles
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The comfort cost C plays an important role for the ego AV to
avoid starting, stopping, braking and pivoting frequently. Given
the velocity and steering angle of the parent node, the comfort
loss can be shown as below:

C n; tið Þ ¼ jv n; tið Þ�v tið Þj1 jd n; tið Þ�d tið Þj (8)

In addition, in early studies (Bai, 2020; Bui and Häggström,
2019), the Euclidean distance was commonly used as a
heuristic function, which is suitable for robots to search for the
shortest path, but fails to meet requirements of the
automobile’s shape and targeted posture. Recently, many
scholars have combined the vehicle’s non-holonomic and
Reeds-Shepp (RS) path planning method (Reeds and Shepp,
1990) to improve the heuristic function for continuous-state
data (Xie, 2020). By equating the ego vehicle to an oriented
particle and connecting arcs and line segments, RS path
planning method can quickly generate smooth and shortest
path that meets maximum curvature constraint, the start and
end positions constraints and heading attitude constraints.
However, the evaluation based on the shortest path still fails to
guarantee the parking efficiency.
In this work, combining with forward velocity integration

method (Kapania et al., 2016), we take the equidistantly
sampled RS path as input, and propose an RS trajectory
estimation method as equation (9) to estimate the passing time
trs of each point in the RS path:

vrs1 1 ¼
min vmax;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2amax Srs1 1�Srsð Þ1 vrs2

p� �
accelerate

max vmin;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2amin Srs1 1�Srsð Þ1 vrs2

p� �
decelerate

vrs else

8>>>><
>>>>:

trs1 1 ¼ 2Srs1 1= vrs 1 vrs1 1ð Þ1 trs

8>>>>>>><
>>>>>>>:

(9)

where rs is the number of sampling points in the RS path, 0� rs
� NRS � 1. NRS is the target point’s sequence number.
{S0,. . ., SNRS} is a set of distances from the starting point to the
sampling points. trs and trs11 are the passing time of sampling
points rs and rs1 1, respectively.
Furthermore, the heuristic cost h can be regarded as the time

required for the child node n at time ti to reach the target point
along the RS path by:

h n; tið Þ ¼ tNRS n; tið Þ (10)

Figure 5 indicates the search flow chart of our improved A-star
algorithm. Holding the evaluation function [equations (4)–(9)], in
the search process, we put the occupied child nodes into the
Closelist, let the child node with the lowest cost of the Openlist be
the parent node. As the traditional A-star algorithmonly concludes
the search process after the target point has been found, whichmay
lead to more computation. To simplify the total search process, if
current cost is the least and current RS trajectory does not collide
with the surrounding static or dynamic obstacles, we will use the
sampled RS trajectory as the future trajectory, and terminate the
search. In addition, we take the output points in X-Y-u -T map as
an initial trajectory for the ego automatic vehicle, and denote them
asXr= [x(t), y(t), u (t), v(t), d (t)].

4. Short-term trajectory planning

The initial trajectory generated by the proposed long-term
trajectory planner is a series of nodes at different times with coarse
path information and rough velocity profile. In this case, tracking
directly will result in great errors and even failure. Besides, the
planning frequency of initial trajectory is so low that there are lots
of uncertain prediction results of the surrounding obstacles.
Hence, in this section, a multi-objective optimization technique,
namely, the NMPC method (Taherian, 2021) is introduced to
obtain a smoother and safer initial trajectory.

4.1 NMPC optimizationmethod
The NMPC method consists of three important parts:
discretization, prediction and rolling optimization. The key of
this method is to transform time continuous optimal control
problems of rolling horizons into structured nonlinear
programs via discretization.
As presented in Figure 6, the dashed line is the reference

trajectory, which is calculated using the improved A-star
algorithm. The trajectory optimized by NMPC method is
shown by the black bold line. In view of the multi-step parking
phenomenon that may occur to the parking process, making the
forward and backward reference trajectories separate at the
gear shifting position.
In every path, choose the point that is the nearest to the

actual position as the initial reference point. If there is more
than one nearest point, use the one that is the closest in time as
initial reference point. Supposing td is the current time instant,
NP is the number of look ahead prediction horizon steps.

Figure 5 Flowchart of X-Y-u -T 4D A-star algorithm
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Such as the purple part in Figure 6, the state sequence of
prediction horizon [Xr(0),. . .,Xr(k),. . .,Xr (NP� 1)] shifts forward
at every time step T, wherein k[[0, NP�1]. Set X

!
td as the start

point of NMPC and ensuring the start-point state of each sub-
problem to be consistent with the solution of the previous. The
local trajectory in each rolling window is then generated by solving
the following optimization problem,which contains cost function J
(t, X(t), U(t)) and constraints, but only the first states and control
inputs are applied to the system:

min J t;X tð Þ;U tð Þð Þ
s:t: _X tð Þ ¼ fN t;X tð Þ;U tð Þð Þ
X tdð Þ ¼ X

!
td

h X tð Þ;U tð Þð Þ � 0

9>>>>=
>>>>;
k 2 0;NP � 1½ � (11)

where fN(t, X(t), U(t)) is the system differential equation. h(X
(t),U(t)) is the convex constraint on this issue.
Because the vehicle differential equation [equation (2)] just

ensures the front wheel angle profile and velocity profile
continuous, there still will be some cusps in those profiles. For
this reason, we set their second derivative ja ¼ €v; jd ¼ €d as the
control variables, and define [x, y, u , v, d , a, wd ] as the state
variables of NMPC.

4.2 Cost function
From global optimality, our first targeted task of NMPC
optimization is to reflect the advantage of the reference
trajectory and seize the best time to accelerate or decelerate. To
make the initial trajectory smooth and traceable, the states and
control inputs errors between of the reference trajectory and
local trajectory are taken as a penalty term via integral time tP:

JF ¼
XNP�1

k¼0

kX td 1 kTð Þ �Xr kð Þk2Q 1 kU td 1 kTð Þk2R
(12)

where Q and R are the cost weighting matrices for the process
states and the control inputs, respectively.
In practice, the condition of the obstacles may change at any

time while driving on the road. Because of the precision of the
predictor, a disparity between the projected and actual scenario is

unavoidable, and it will grow larger as the prediction horizon
lengthens. This indicates that the initial solution found through
long-term trajectory planning cannot completely guarantee the
vehicle’s safety. Meanwhile, if local planning fails to predict the
movement states of the obstacle in real time, and continues to
solve the problem based on the initial state, parking accidents will
occur. For that, holding the potential field function [equation (6)]
and real-time predicted trajectories of obstacles, the objective
function of the collision avoidance can be described as follows:

JO ¼ wO

XNP�1

k¼0

10=exp 11 10 � dis td 1 kTð Þð Þ� �
(13)

where dis(td 1 kT) is the shortest distance between obstacles and
the ego vehicle in k ·T seconds.wO is weight of this objective.
Though, adjusting local trajectory ensures the safety of the

vehicle, it also brings problem that the target is unreachable. To
raise the success rate of parking in a dynamic environment, the
terminal objective function JE penalizes the deviation of the
terminal states from the reference trajectory by:

JE ¼ kX td 1 ðNP � 1ÞTð Þ �Xr NP � 1ð Þk2E (14)

whereE is a diagonal weightingmatrix for the terminal states.

4.3 Constraints
Parking is a complex operation, which is integrated by steering
control and speed control. In fact, in the process of parking, the
speed is usually low and the steering angle is mostly at AVs’
limit. With reference to the above conditions, the state variables
and control variables are constrained to meet the physical
requirements of the egoAV as:

vmin

dmin

amin

wdmin

2
66664

3
77775 �

v tð Þ
d tð Þ
a tð Þ
wd tð Þ

2
66664

3
77775 �

vmax

dmax

amax

wdmax

2
66664

3
77775
k 2 0;NP � 1½ �
t ¼ td 1 kT

(15)

where vmin, vmax, dmin, dmax are the limited speed and front-
wheel steering angle allowed in this case.

Figure 6 Diagram of NMPC
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Near the parking slot, the direction of the vehicle needs to be
adjusted continuously and the width of road changes suddenly.
For reducing the search time of long-term trajectory planning
and simplifying the constraints of short-term trajectory
planning, we used the regional partition method to divide the
road map into the channel region S and the complex region D,
corresponding to the green and gray parts in Figure 6.
Given the location relationship between the prediction area P

where the state sequence of reference trajectory [Xr(0),. . .,
Xr(k),. . ., Xr (NP � 1)] is located and the complex region D as
the critical condition. If P \ D = 1, it is easy to express the

corridor boundary constraints by limiting the ego vehicle’s four
corner points CDEF:

�B=2

�B=2

�B=2

�B=2

2
666664

3
777775 �

yC tð Þ
yD tð Þ
yE tð Þ
yF tð Þ

2
666664

3
777775 �

B=2

B=2

B=2

B=2

2
666664

3
777775 (16)

where t = td 1 kT, k [ [0, NP � 1], B is the width of road in the
channel region.

Figure 7 Spatio-temporal trajectory

The ego AV Dynamic obstacles Static obstacles NMPC trajectories Obstacles’ trajectories

(a) (b) (c) (d)

Notes: (a) Scene 1; (b) scene 2; (c) scene 3; (d) scene 4

Figure 8 Paths planned by our method

The ego AV Static obstacles NMPC trajectories Obstacles’ trajectories Long-term predicted trajectories

(a) (b)

(c) (d)

Obstacle at 0.5m/s speed

Obstacle moving
beside the ego

AV

Obstacle at 1m/s speed

Obstacle in parking slot

Notes: (a) Scene 1; (b) scene 2; (c) scene 3; (d) scene 4
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When P \ D = 1, the complex road boundary is equivalent to
static obstacles for processing, such as these red points in Figure 6.
Here, the road boundaries are specifically constructed as:

�B=2� BP

�B=2� BP

�B=2� BP

�B=2� BP

2
66664

3
77775 �

yC tð Þ
yD tð Þ
yE tð Þ
yF tð Þ

2
66664

3
77775 �

B=21BP

B=21BP

B=21BP

B=21BP

2
66664

3
77775

t ¼ td 1 kT

k 2 0;NP � 1½ �

kxf tð Þ � xo mð Þ; yf tð Þ � yo mð Þk2
kxr tð Þ � xo mð Þ; yr tð Þ � yo mð Þk2

" #
>¼ R1 ro mð Þ

R1 ro mð Þ

" #

8>>>>>>>>>><
>>>>>>>>>>:

(17)

where BP is the width of parking slot, m is the number of static
obstacles, and xo(m), yo(m), ro(m) represent the position and
size of themth static obstacle.

Similarly, the collision avoidance constraints of dynamic obstacle
in the prediction horizon are given as:

kxf tð Þ � x j
obs tð Þ; yf tð Þ � y j

obs tð Þk2
kxr tð Þ � x j

obs tð Þ; yr tð Þ � yj
obs tð Þk2

2
4

3
5 >¼ R1Rj

obs

R1Rj
obs

2
4

3
5

k 2 0;NP � 1½ �; t ¼ td 1 kT
(18)

5. Numerical simulation

5.1 Simulations in four common scenes
In long-term trajectory planning, the 4D spatio-temporal map
with discrete resolution of 0.1 is used to improve A-star
algorithm and search for optimal maneuver. Meanwhile, the
ACADO Toolkit is applied to transform the NMPC
optimization problem [equation (11)] into a small and sparse

Figure 9 Control profiles planned by our method

The front wheel steer angle of the ego AV Speed of the ego AV

(a) (b)

(c) (d)

Notes: (a) Scene 1; (b) scene 2; (c) scene 3; (d) scene 4
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quadratic program by using multiple shooting discretization,
Real-time iterations scheme and Gaussian–Newton, as well as
efficient C programming language (Rathai, 2019). Presuming
that the prediction information is known, simulations are
presented to verify the effectiveness of the proposed method in
this section.
In this paper, the proposed method is tested in four common

dynamic parking scenes from daily life. Scene 1 and Scene 2
focus on the situation where automatic vehicle drives to the
parking spot with obstacles of different speeds. Scene 3, Scene
4 are set with obstacles of circuitous and straight path in AV’s
backward direction. Combined with QPOASES solver, the
short-term planning runs every 0.1 s and derives the simulation
results as follows:
The planned spatio-temporal trajectory is presented in

Figure 7, where the blue lines are planned trajectories by
NMPC optimizer, while the red lines represent obstacles’
trajectory. It is demonstrated that the vehicle can complete the
parking task quickly and safely by overtaking, waiting, speed
regulation or other schemes automatically itself when facing
obstacles in different situations. And there is no need for an
additional decision module because the efficiency and safety
can be balanced in searching.
In Figures 8 and 9, it can be seen that the planned path,

speed and front-wheel steering angle profiles of these scenarios
are safe (without collision), continuous, smooth and feasible
(within the range of 2m/s and 0.7 rad), which meets the
physical performance constraints demands.
From computing power, the calculation time of the local

planning mentioned above is recorded. As described in
Figure 10, based on ACADO and OASEQP, the required time
for the calculation in every rolling window is within 7ms in
most cases. Besides, the longest calculation time is 15ms,
which is much less than the sampling time of 100ms and
satisfies the real-time requirement of calculation.

5.2 Comparison with spline optimizationmethod
Taking Scenario 4 as an example, the spline planning used in
the study of Zhou et al. (2020a, 2020b) is compared with
NMPC put forward in this paper. Constrained by static
obstacles avoidance target and minimum curvature limitation,
the path and speed profiles planned by spline method are
shown in Figure 11.
As shown in Figure 11(a) and (b), the results of our method

are similar to the spline results, both of which have high

smoothness. Meanwhile, the path curvature is less than
0.34m�1, which meets the maximum front wheel angle
requirements. However, as we all know that using fmincon
solver to acquire the spline coefficients of a nonlinear
optimization problem takes a long time.
In the case of the control profiles in Figure 11(c), the spline

method is applied to solve the speed profile without collision in
a S-T map. On the whole, both planned velocity profiles are
smoother. In view of safety, the velocity result of our method
reaches its maximum value during the departure of the
obstacle, while the result of the spline method reaches the
maximum value of 2m/s when the obstacle is approaching,

Figure 10 Computation performance

1,000

Figure 11 Trajectories planned by different methods

(a) 

(b) 

(c) 

Obstacle’s path NMPC path Spline path The ego AV

Notes: (a) the path curvature planned by spline method;
(b) paths planned by different methods; (c) control profiles
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which is more dangerous. Furthermore, by contrast, NMPC
optimizer can coordinate the ego AV’s speed and its front-
wheel steering angle simultaneously, which is in accord with the
parking and collision avoidance demands, acquires more
detailed trajectory’s information and simplifies the following
tracking and control tasks.

6. Conclusion

To summarize, the proposed trajectory planning frame based
on spatio-temporal heuristic method used for automatic
parking to avoid obstacles has the following advantages:
� In terms of long-term planning, a 4D spatio-temporal

map, vehicle kinematics constraints and RS curve are used
to improve A-star algorithm with the shortest time as the
heuristic function. It not only finds the initial solution of
parking trajectory but also resolves a contradiction
between the parking maneuver and the obstacle avoidance
maneuver in dynamic scenes.

� In terms of short-term planning, a NMPC trajectory optimizer
has been introduced based on vehicle kinematics constraints,
minimum deviation target and the obstacle avoidance target.
Besides, applying ACADO Toolkit and QPOASES solver can
make the trajectory feasible, safe and efficient.

This study provides an effective approach to trajectory planning
and decision-making in dynamic environment, which can be
extended to other complex applications, such as highways and
unstructured roads.
However, as the parking process is short and the obstacles’

long-term trajectories are pre-assigned instead of designing
a prediction module, the planning frequency of the long-
term planner is not set. To solve above limitations and
improve the performance of automatic parking products,
designing an obstacles’ trajectories prediction module for
parking like the previous (Gan, 2021) would be our future
work.
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