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Abstract
This study develops a novel method for mitigating credit risk through the use of structured derivatives,
focusing in particular on the use of European put options as a strategic hedging tool. Inspired by the work of
Merton (1974), our approach introduces the concept of default triggered by the stock price ST breaching a
predefined barrier B. By establishing a distributional equivalence between an existing default model and
PðST < BÞ for a given timeT, we demonstrate the potential for reducing the necessary capital allocation for a
projected loss X(T) by partially hedging with a European put option. We formulate and solve an optimization
problem w.r.t. a specific risk measure to determine the optimal strike price for the option, and our numerical
analysis confirms a reduction in the Solvency Capital Requirement (SCR) in markets with and without jumps.
Our findings provide (insurance) companies with a pragmatic approach to mitigating losses while
maintaining their current risk management framework.
Keywords Credit risk management, Equity derivatives, Partial hedging strategies, SCR reduction,
Distance to default, Connection of debt and equity
Paper type Research paper

1. Introduction
In this paper, we explore a method for mitigating credit risk exposure through the strategic
use of equity derivatives, drawing upon the foundational works by Merton (1974) and Black
and Cox (1976) as our conceptual underpinning. We examine a company’s balance sheet and
denote by the variableVt the company’s assets at time t ≥ 0. In alignment with fundamental
accounting principles, these assets are financed by equity and debt. Equity is quantified as
the product of the share price St and the total number of outstanding shares, whichwe denote
by N ∈ N>0, i.e. Et 5 StN. Debt D, on the other hand, aggregates all pending financial
obligationswithmaturityT [1]. Thus, for fixed timeT, the equity value is conceptualized as a
call option on the company’s assets with a strike price equal to its debt, formalized as
ET ¼ STN ¼ ðVT −DÞþ, a notion initially posited by Merton (1974). The structural
framework of Black and Cox (1976), on the other hand, introduced the concept of default as
themoment the asset value falls below the debt level, equivalently when the equity value and
consequently the share price drop to zero [2], expressed as:
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τ ¼ inf t > 0 : Vt ≤Df g ¼ inf t > 0 : Et ¼ 0f g ¼ inf t > 0 : StN ¼ 0f g

¼ inf t > 0 : St ¼ 0f g:

However, this definition may oversimplify the complexity of real-world defaults, which
can precede the stock price reaching zero, influenced by factors like market delays, pending
derivative contracts, or speculative trading activities (take Wirecard as an example: Even
after default has been announced, trading in the stock remained active). Accordingly, we
propose the establishment of an alternate, positive default thresholdB> 0, wherein default is
determined by the stock price’s initial crossing of this predefined level. Both model
definitions—the first involving a first-passage model over time and the second concerning a
fixed time T—serve different purposes in various applications. We specify a company’s
credit exposure C > 0 to the at-risk entity, defined as the total outstanding debt maturing at
T > 0. This places us within the framework established by Merton, focusing specifically on
the time pointT rather than considering the entire time span. Building upon that framework,
we introduce the concept of loss X as a random variable functionally dependent on the share
price at maturity ST [3]:

Xdf BðSTÞ ¼ C1fST≤Bg: (1)

Evidently, the loss profile closelymirrors that of a digital put option based on ST, which pays
out the exposure amount C > 0. Although this financial instrument would serve as an ideal
representation or hedge, it is not available in themarket. Consequently, we employ European
put options as themost viable alternative. Generally, put options offer only an approximation
of the loss profile, illustrated in Figure 1.

Figure 1.
Payoff profiles of loss

and put option
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In the depicted scenario, we set the exposure at C 5 1. The green line represents the original
loss, while the blue line illustrates the payout from a put option with a strike price of K. It is
observable that incorporating a put option alongside the original exposure C yields a
mitigated risk coverage: the area shaded in light blue indicates the risk offset by the specific
put option, whereas the red-shaded area delineates the residual risk post the partial hedging
with the put option. Thus, we intend to (partially) hedge the original lossX using the portfolio
a(PK � PK,0), where

PK ¼ K � STð Þ
þ

is the payout of the put option atmaturityT and a∈ R signifies the number of options purchased,
with PK,0 being the initial fair price of the put option. However, several questions still persist:

(1) Which option, respectively, which strike K [4] to choose?

(2) How many of such options should we buy, i.e. what is the optimal a?

(3) Does this offer any benefits for the (insurance) company as the purchase of these
options comes at the cost of the premium?

To address the initial question, it is imperative to establish a criterion to optimize the
decision-making process. We note that the approach outlined above implies a linear
replicating portfolio in the put option; hence, as we aim for the best replication, we need to
find an option that maximizes a linear fit with the original loss X. This leads to the classic
Pearson’s correlation as a maximizing criterion. As the model implicitly gives all other
parameters and the estimation therein or the definition of the loss (maturity T of the option
coincides with the maturity of the exposure), we aim to optimize for the strike K.
Furthermore, due to the calculation rules of the correlation, we have:

Corr X;PKð Þ ¼ Corr C1fST≤Bg;PK
� �

¼ Corr 1fST≤Bg;PK
� �

:

Therefore, the problem can be formulated as follows:

max
K∈Rþ

Corr 1fST≤Bg;PK
� �

: (2)

Having established the strike, for which the corresponding option maximizes the linear fit
with the original lossX, we then focus on howmany such optionswe should buy. For this, we
again formulate an optimization problem, but this time, we minimize the expected squared
distance between the two portfolios dependent on the parameter a∈ R. This leads to the
following optimization problem:

min
a∈Rþ

E X � a PK � PK;0ð Þð Þ
2

h i
: (3)

As the strike is given by the previous optimization combined with the parameters
determined by the market model for ST, this optimization problem can be solved directly.
These considerations are taken under the real-world measure P. Hence, solving the
optimization problem by basic calculations yields:

Lemma 1.1. (Solution of (3))The optimal solution a* ∈ Rþ for the optimization problem
(3) is given by
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a* ¼
E X PK � PK;0ð Þ½ �

E PK � PK;0ð Þ
2

h i;

where X is given in (1).

Given that the loss X and the payout of put options PK are functions of the stock price ST,
the optimization problem (2) is well defined. Intuitively, selecting a higher strike K could
enhance the fit; however, it implies increased costs. This necessitates addressing the
subsequent question regarding cost considerations. According to Basel II regulations,
(insurance) companies must maintain a designated reserve of capital, known as the Solvency
capital requirement (SCR), to either fully or partially offset the potential claims outstanding.
This regulatory capital requirement, stipulated under EU regulations, is intended to
encompass 99.5% of the unexpected losses. Within the context of our analysis, the risk is
denoted by X, allowing us to express the SCR for this risk as:

SCRXdVaRαðX � E½X�Þ;

where α is customarily set at 99.5 per cent. Consequently, the feasibility of a (partial) hedge
utilizing a(PK�PK,0) is contingent upon achieving a positive reduction in SCR,mathematically
represented as:

SCRX � SCRX−PK > PK;0:

This inequality must be satisfied to address cost considerations [5]. Contrary to the literature,
we do not use structural models to explain default, but assume to have a default model in place
and aim to use this as a connection [6]. From a mathematical perspective, we introduce the
default time of a company as the random variable τ, which is defined on the probability space
ðΩ;F ;PÞ. When engaged in CDS contracts, insurance companies typically serve as protection
sellers, thereby assuming the credit risk associated with their counterparties. These contracts
are quoted either through an upfront premium coupledwith a fixed coupon or via a par spread,
as indicated inMichielon et al. (2022). To dynamically convert between quoting conventions [7]
it is assumed that the hazard rate Λ: (0, þ∞)↦(0, þ∞) defined by the default probability

Pðτ ≤ tÞ ¼ 1� exp −
Z t

0
ΛðsÞds

� �

;

is constant (White, 2014). Hence, the randomdefault time is assumed to follow an exponential
distribution [8] ([Packham et al., 2013; Appendix]), i.e.

Pðτ ≤ tÞ ¼ 1� e−Λt: (4)

In this paper, we adopt the assumption that the marginal default distribution of τ is an
exponential model. In summary, the strategy that is deployed in this paper comprises of the
following steps:

S1 Fix a model for ST.

S2 Find the parameters for the model for ST and the necessary barrier B.

S3 Solve optimization problem (2) [9], calculate the optimal quantity a* in Lemma 1.1.

S4 Obtain the loss profile to argue for a reduction in SCR.
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The models under consideration include the traditional Black–Scholes model and enhanced
jump-diffusion models featuring both log-normal and constant jump sizes. For all models
discussed, we establish a filtered probability space ðΩ;F ;PÞ and introduce fWtgt∈ð0;TÞ to
represent Brownian motion, fLtgt∈½0;T� as a compound Poisson process (CPP) subordinator.
Subsequent sections begin with a review of existing literature on default considerations in
structural models and the strategies for partial hedging. After exploring the dynamics of
fStgt∈½0;T� both with and without jumps, yielding unique maximuma of the correlations, we
analyze the unexpected loss profile engendered by including the put option PK to show S4.
The discussion culminates with a conclusive summary.

2. Literature review
This paper contributes to two main areas of literature, i.e. default prediction in structural
models and partial hedging.

2.1 Default prediction in structural models
There have been several approaches to assessing credit risk in the literature, most
prominently reduced form and structural models. Statistical models have started with the
Altman Z-Score (Altman, 1968) and have evolved into complex machine learning methods,
including regression trees, neural networks, and many more (Siggelkow and Fernandez,
2023). In structural models (named by Duffie and Singleton (1999)), on the other hand, it is
assumed that certain stochastic dynamics drive the value of a firm’s assets and that a default
occurs when the realization of this process is lower than the facial value of the firm’s debt at
its maturity. This approach was pioneered by Black and Scholes (1973) and Merton (1974).
The authors assumed that the asset value follows a geometric Brownian motion, and the
default probability can be calculated using the standard normal distribution. This model
assumption has subsequently been extended to take into account various features, such as
sovereign issuers (Gray et al., 2019), the existence of multiple maturities for the firm’s debt
(Geske, 1977), or the possibility for the default to occur before the debt’s maturity (Black and
Cox, 1976; Leland and Toft, 1996); these latter models are often referred to as first passage or
barrier models [10]. In Merton (1974), the author treated equity as a call option on the firm’s
asset value. Under this structural modeling approach, the corporate bond credit spread
becomes a function of financial leverage and firm asset volatility. The financial leverage then
links equity to debt and relates firmvolatility to equity volatility. InMerton (1976), the author
recognized the direct impact of corporate default on the stock price process and assumes that
the stock price jumps to zero and stays there upon the random arrival of a default event.
Black introduced the so-called DD, building on this connection between debt and equity.
Themeasure estimates the probability that the value of the firm/asset falls beneath the value
of the debt. After having been clarified in Crosbie (2003), many researchers have analyzed
this measure and concluded that it is a main covariate to asses and predict financial distress
(Duffie et al., 2009), as well as to explain CDS spreads (Bai andWu, 2011), pure credit contract
prices (Carr and Wu, 2011), or equity returns (Vassalou and Xing, 2004). The authors of
Jessen and Lando (2015) showed that despite the simplifying assumptions that underlie its
derivation, the DD measure under the geometric Brownian motion model has proven
empirically to be a strong predictor of default. They further concluded that DD generally
ranks firms’ default probabilities, even if the underlying model assumptions are altered, i.e.
the geometric Brownian motion assumption is relaxed. The authors of Bharath and
Shumway (2008) provided evidence showing that the functional form of Merton’s DD model
makes it useful and important for predicting defaults. They compared the model to a “naive”
alternative, which uses the functional form suggested by theMertonmodel but does not solve
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the model for an implied probability of default. They concluded that while the Black DD
model does not produce a sufficient statistic for the probability of default, its functional form
is useful for forecasting. Building on that idea are the authors of Chen and So (2014), who
investigated whether the default predictability of theMerton DDmodel would be affected by
considering investors’ ambiguity aversion and concluded that this model performs better
than the naive model in Bharath and Shumway (2008). In Friewald et al. (2014), the authors
investigate the relationship between credit risk premia, derived from Credit Default Swap
(CDS) spreads, and equity returns. The paper uses firm-specific measures and arbitrage-free
term structure models to estimate credit risk premia, demonstrating that CDS spreads
provide equity-relevant information distinct from common distress riskmeasures. The study
finds that firms with higher credit risk premia tend to have higher default probabilities and
that credit risk premia are informative of equity returns, particularly during financial crises
when CDS spreads exhibit time-varying risk premia. While the Brownian assumption infers
a tractable model, numerous authors pointed out that stock returns are not normally
distributed, significantly limiting the model’s use in practice (Brambilla et al., 2015).
Moreover, the estimates of the probability of default can be biased downwards, exposing the
banks to the possibility of undercapitalization and systematic shocks. Furthermore, the
Brownian hypothesis has been criticized for producing an almost zero default probability for
short maturities: if this were true, then short-term bonds should have close to zero credit
spread, which is typically not the case, as first noted in Philip Jones et al. (1984) (see also
subsequent discussions such as Demchuk andGibson (2006)). This underestimation of short-
term default probabilities and theoretical credit spreads is known as the credit spread puzzle.
It has been evidencedmany times and for every ranking, from high yield to investment grade
issuers (see a recent overview in Nozawa et al. (2019)) and even sovereign issuers (see
Duyvesteyn and Martens (2015) and references therein). The plausible explanation for this
discrepancy is that other factors can influence credit spreads, such as taxes, liquidity premia,
and jump risk (Bai et al., 2020). These arguments led researchers to extend the Brownian
model. The natural idea is to introduce jumps in the asset dynamics to better capture short-
term defaults occurring after a sudden drop in the value of a company’s assets following, for
instance, earning announcements, central bank meetings, or major political events. Jump
processes can be of two kinds: jump-diffusion or pure jumps processes, and the formalism of
L�evy processes conveniently describes both. Jump diffusion processes were introduced in
structural credit risk modeling in Zhou (1997) by adding a Poisson process whose discrete
jumps are normally distributed to the usual diffusion process to materialize sudden changes
in the firm’s assets value; other distributions for the magnitude of the Poisson jumps have
subsequently been considered, such as negative exponential distributions, leading to higher
short term probabilities and more realistic credit spread curves. Self-exciting Hawkes
processes have also been introduced in Ma and Xu (2016), a model for which an analytical
formula for the equity value has been recently derived in Pasricha et al. (2021). Pure jump
processes allow for an interpretation in terms of business time (differing from the operational
time) or the possibility for jumps to occur arbitrarily often on any time interval; such
processeswere introduced in the construction of credit riskmodels in the late 2000s and early
2010s, notably in Madan and Schoutens (2008) for one-sided processes (i.e. featuring
downward jumps only) and from the point of view of first passage models, and in Luciano
(2010) for double-sided processes, with CDS-based calibrations. Extensions to multivariate
processes have also been studied in Marfe (2012). The authors of Aguilar et al. (2021)
extended the literature on DD modeling with pure jump processes. They showed that
including jump processes is necessary and that jump-diffusion processes are outperformed
in default prediction because short-term default probabilities are not underestimated.
The authors of Jovan and Ah�can (2017) extended the Brownian model by allowing for NIG
distributed returns. By applying their results to the Ljubljana stock exchange, they found
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that the probability of default estimates using the Brownian model is biased. In contrast, the
estimates from the NIG Merton model are robust. In Benos and Papanastasopoulos (2007),
the authors enriched the DD metric with financial ratios and accounting variables into a
hybrid model. They concluded that the combination improves both the in-sample fit of credit
ratings and the out-of-sample predictability of defaults. The authors of Guo and Li (2022)
recently analyzed a stressed version of the DD model by controlling for raw default
probability and failure beta. They showed that the stressed DD can explain credit default
swap spreads and rating variations. In Iba~nez (2023), the authors most recently
demonstrated that default events in endogenous credit-risk models, initially defined by
low asset values, can also be characterized by low equity prices and negative net cash
flows, measured through the volatility-adjusted DD ratio. As mentioned, default is
associated with a low asset value under the Black/Merton approach. According to Iba~nez
(2023), this corresponds to a low equity price/large and negative cash flow, and hence, the
default barrier can be chosen differently (in line with the findings in Black and Cox (1976),
Leland and Toft (1996)). An alternative to Merton are Leland-type models (Leland, 1994),
where the default threshold is taken endogenously by equity holders who maximize the
value of their equity stake. The default is an American put associated with a low asset
value/large and negative flow. The authors of Carr and Wu (2011) proposed a simple and
robust link between equity out-of-the-money American put options and a credit insurance
contract on the same reference company. This means it is natural to consider put options
when considering credit risk. These Leland-type models infer that the default event might
be strategic, as both equity holders and debt holders can have incentives to induce or force
bankruptcy well before the equity value completely vanishes. In Gordy and Carey (2007),
the authors find empirical support for active strategic behaviors from private debt holders
in setting the endogenous asset value threshold below which corporations declare
bankruptcy. In particular, they find that private debt holders often find it optimal to force
bankruptcy well before the equity value vanishes. This again implies that it is natural to
consider a barrier different from the value of the debt in these passage models, which
aligns with our approach in this paper.

2.2 Partial hedging
Option pricing theory postulates that most contingent claims can be hedged, provided the
starting capital is at least equal to the claim’s fair value in complete markets or the
minimum super-hedging price in incomplete markets. Nonetheless, the expenses
associated with perfect hedging are often prohibitively high for practical purposes,
leading to the emergence of partial hedging strategies. In these strategies, investors use
initial capital below the cost of perfect hedging to devise strategies to reduce their
potential losses according to specific risk metrics. F€ollmer and Leukert have been
instrumental in advancing the concept of optimal partial hedging, exploring areas such as
quantile hedging and efficient hedgingwithin semimartingale financial market models, as
detailed in F€ollmer and Leukert (1999) and F€ollmer and Leukert (2000), respectively. They
offer straightforward solutions for complete markets utilizing the classical Neyman-
Pearson lemma and provide theoretical solutions for incomplete markets through the
convex duality method. The exploration of partial hedging has also extended into more
complex market scenarios. In Cvitani�c and Spivak (1999), the authors delved into quantile
hedging in contexts where information is partial and where market influence by large
investors is significant. In Nakano (2011), the author addressed the optimization of
quantile hedging and efficient hedging strategies for claims characterized by a single
default time using linear loss functions. Furthermore, in Melnikov and Nosrati (2017), the
authors examined various partial hedging approaches and their utility in the pricing and
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hedging insurance contracts, showcasing the broad applicability of these strategies
beyond traditional financial markets. When devising partial hedging strategies, a critical
factor for investors is the selection of the risk criterion. The concept of risk measures was
extensively examined in Artzner et al. (1999), which laid the foundation for their
application in the valuation and hedging of contingent claims, as demonstrated in Xu
(2006). The optimal portfolio is identified in this context by minimizing a convex risk
measure. Additionally, the literature includes significant contributions such as the study on
Law-Invariance risk measures (Bernard et al., 2015) and the exploration of risk measures
derived from distortion functions (Madan and Schoutens, 2016), further enriching the field’s
understanding of risk assessment methodologies. In financial institutions, VaR and CVaR are
themost commonly used riskmeasures, with a long list of references. For instance, the authors
of Melnikov and Smirnov (2012) studied partial hedging w.r.t. the CVaR where the semi-
explicit solution of the optimal CVaRhedging problem in completemarketswas given. In Cong
et al. (2013), the authors discussed VaR-based optimal hedging, while in Cong et al. (2014), the
CVaR-based optimal hedging problem was solved without the restriction regarding the
completeness of markets. In Melnikov andWan (2022), the authors analyzed the more general
tail riskmeasure namedRVaR,whichwas applied to hedging problems in Cont et al. (2010) and
Embrechts et al. (2018). They concluded that the optimal hedging strategy is a knock-out call
option written on the risk.

2.3 Own contributions
In this paper, we present a method for (insurance) companies to strategically manage credit
risk via derivatives, notably European put options. Our contributions to the literature are
manifold:

(1) Deviating from conventional approaches in the literature, which predominantly
employ structural models for modeling defaults directly, our approach is based on
the premise of a predefined default distribution, F(t), t> 0. This variation facilitates
the integration of our findings into the risk management frameworks of (insurance)
firms, offering a dynamic mechanism for credit risk mitigation.

(2) We define the potential loss as exposure (for instance, the sum of outstanding
invoices) with an assigned maturity T. Imposing equality in the distribution in T, i.e.

FðTÞ¼! PðST ≤BÞ;

we establish and resolve an optimization problem to identify the European put option [11]
that maximizes the correlation.

(1) Additionally, we demonstrate that applying this European put option solves the
optimization problem with a unique maximum and substantially reduces the capital
requirement of insurance companies.

To conclude, the insights derived from this paper provide (insurance) companies with the
strategy to maintain risk within their operational framework while concurrently mitigating
potential losses by acquiring European put options. The outcomes of our research directly
furnish the optimal strike price for these options. We do not claim that our connection
between the credit and equity world is novel, as numerous works (e.g. Friewald et al. (2014))
have previously focused on such a connection. However, while Friewald et al. (2014) focuses
on the general connection between credit and equitymarkets, they do not directly incorporate
a predefined risk model and distributional equivalence at maturity, T, a gap we aim to fill.
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Furthermore, our method allows for practical application by companies, as it enables direct
integration into daily risk management practices through numerical analysis of Solvency
Capital Requirement (SCR) reduction. Additionally, Figure 2 summarizes the strategy of this
paper and highlights our contributions.

3. Black–Scholes model
The first model we consider for ST is the Black–Scholes model. We therein assume that the
dynamics can be explained by the following SDE:

dSt ¼ Stðμdt þ σdWtÞ;S0 > 0;

where μ, σ > 0 are drift and standard deviation of the process, respectively. Solving this SDE
utilizing Itô for the maturity time in question leads to

ST ¼ S0eðμ−1=2σ2ÞTþσWT

and we have WT ∼Nð0;TÞ. This concludes the model selection phase outlined in S1. The
subsequent phase involves defining themodel’s parameters and determining the appropriate

Figure 2.
Graphical
representation of the
approach deployed
throughout this paper
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barrier level. It is at this juncture that the relevance of our previously established default
model becomes apparent:

Pðτ ≤ tÞ ¼ 1� e−Λt ¼ FðtÞ:

Then, we let θ 5 (μ, σ) be the vector of model parameters, GðtÞdPðSt ≤BÞ and use a least
squares estimation in the context of distributions, i.e. we minimize L2ðF;GÞ w.r.t. the
parameters [12]:

ðbμ;bσ; bBÞ ¼ arg min
θ;B

1
2
kF � Gk22 ¼ arg min

θ;B

1
2

Z ∞

0
FðtÞ � GðtÞð Þ

2dt:

For numerical reasons, we introduce a set of discrete time points t0 < t1 < . . . < tN [13] and
consider the discretized version of this continuous setting, i.e.

ðbμ;bσ; bBÞ ¼ arg min
θ;B

1
2

XN

i¼0

1� e−Λti � P
�
Sti ≤B

�� �2
; (5)

where N is the number of time points we use. In the Black–Scholes model context, we can
explicitly calculate the default probability. This quantity is given by:

PðSt ≤BÞ ¼ Φ
lnðB=S0Þ � ðμ� 1

�
2σ2Þt

σ
ffiffi
t
p

� �

: (6)

Hence, the objective of (5) is to identify the model parameters and the barrier B such that the
above normal distribution closely aligns with the predetermined exponential distribution
over time while ensuring distributional equivalence for fixed T. An illustrative example of
such an alignment is provided in the subsequent graphical representation, marking the
completion of S2.

It becomes evident that for low default probabilities, as displayed in Figure 3a, the fit
between the two distributions is more accurate than for higher default probabilities shown in
Figure 3b. Additionally, the results exhibit similar values for both the drift and the volatility,
despite differing default barriers bB. Since this barrier must be crossed for a default to occur, it
is more likely with bB ¼ 0:97, given that the initial value is S0 5 1. Therefore, a higher barrier
aligns with a higher default intensity, which is logical. Moreover, since our focus is on
distributional equivalence at a specific time point T, it is crucial for the distributions to
intersect at this time point, as demonstrated in both scenarios. For further numerical
analysis, we concentrate on the estimation parameters from Figure 3b, corresponding to the
higher default probability. Assuming accurate parameter estimation, we can rearrange (6)
for the exposure maturity T > 0 to obtain,

B ¼ S0e
bσ
ffiffiffi
T
p

Φ−1 1−e−ΛTð Þþðbμ−1=2bσ
2
ÞT > 0; (7)

where bσ;bμ are the estimated parameters from (3b) [14]. Asmotivated in the introduction of this
paper, we aim to identify the strike priceK that maximizes the correlation between the default
indicator process and the associated put option. Naturally, we consider this question under the
real-world measure P and the dynamics (3). Recall the payout function of the put from (1).
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Figure 3.
Comparison of
parameter estimations
under different Λ
values for the Black–
Scholes model
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Theorem 3.1. (Correlation in the Black–Scholes model) In the Black–Scholes
model with given parameters σ, μ > 0,P-dynamics as given in (3), maturity
time T > 0, and barrier B obtained via (7), we have

Corr 1fST≤Bg;PK
� �

¼

1
f ðPKÞ

e−ΛTE½PK� forK ≤B;

1
f ðPKÞ

1� e−ΛT
� �

K � E½PK �ð Þ
�

�S0eμTΦ Φ−1 1� e−ΛT
� �

� σ
ffiffiffiffi
T
p� ��

for K > B;

8
>>>>>>>>><

>>>>>>>>>:

where f ðPKÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e−ΛT 1− e−ΛTð Þ E½ð P2
K �− E½PK �

2
Þ

q

. Further, we can conclude that there is a
unique K* maximizing the correlation.

Example 3.2. (Illustration of correlation including its derivative) In the analysis
of the correlation function and its derivative, which is divided into two
segments, we employ distinct colorations for each segment within our
graphical representation. In this numerical example we utilize Λ 5 1.1, and
the parameter estimation illustrated in Figure 3b, obtaining the values
ðbμ;bσ; bBÞ ¼ ð0:07; 0:15; 0:97Þ. With (7), we can explicitly calculate B in this
model and obtain, as expected, B ¼ bB ¼ 0:97 [15].The selected time horizon
is T 5 0.3 years, corresponding to approximately four months, deemed a
practical duration for assessing exposure. The analysis is displayed in
Figure 4.

In addition to solving the optimization problem (2) explicitly, we can also simulate the
optimal quantity as displayed in Lemma 1.1. Figure 5 displays the optimal quantity for the
strike price established in Example 3.2.

4. Jump-diffusion model with lognormal jumps
As discussed in the literature review, while pioneering, the Black–Scholes model exhibits
certain limitations (e.g. underestimation of short-term default probabilities, negligence of
jumps) that necessitate the inclusion of jumps tomore accurately reflect market dynamics. In
Merton (1976), the author introduced the concept of jumps characterized by a lognormal
distribution with parameters μJ ; σ2

J , to address these limitations. The author derived and
related the SDE dynamics to the Black–Scholes model. For details, we refer the reader to the
source. However, we end up with the following conditional dynamics:

SðkÞt ¼ SðkÞ0 e μ−1=2σ2
kð ÞtþσkWt ; (8)

whereSðkÞt is equal toSt conditioned on the number of jumps {Nt5 k} and σk,SðkÞ0 are adjusted
standard deviation and a modified initial value. The construction again implies mutual
independence between Nt and Wt, and a fixed T represents the exposure’s maturity. This
concludes S1. The subsequent step S2 implies further complexity compared to the Black–
Scholes model as the introduction of jumps results in non-continuous paths of St. Comparing
this with a continuous distribution such as the exponential is non-trivial. Furthermore, more
parameters must be estimated, as the jump parameters must also be considered. Therefore,
we leave this for further research, as parameter estimation for L�evy processes is a field of
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Figure 4.
Numerical illustration
of the correlation and
the derivative of
correlation with
parameters S0 ¼ 1;
bμ ¼ 0:07; T ¼ 0:3;
bσ ¼ 0:15;
Λ ¼ 1:1; B ¼ bB ¼ 0:97
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theory in itself. However, we can formulate a condition for the barrierB, similar to the Black–
Scholes model. Therefore, we impose that for the discrete-time pointT (maturity of exposure
and, hence, option), we have equality in the distribution, i.e.

PðST ≤BÞ ¼
X∞

k¼0

PðNT ¼ kÞPðST ≤Bj NT ¼ kÞ

¼
ð8ÞX

∞

k¼0

PðNT ¼ kÞP SðkÞ0 eðμ−1=2σ2
kÞTþσkWT ≤B

� �

¼
X∞

k¼0

PðNT ¼ kÞP
1
ffiffiffiffi
T
p WT ≤

ln
B

SðkÞ0

 !

� μ� 1
�
2σ2

k

� �
T

σk

ffiffiffiffi
T
p

0

B
B
B
B
@

1

C
C
C
C
A

¼
X∞

k¼0

PðNT ¼ kÞΦ
ln

B

SðkÞ0

 !

� μ� 1
�
2σ2

k

� �
T

σk

ffiffiffiffi
T
p

0

B
B
B
B
@

1

C
C
C
C
A

e
X∞

k¼0

PðNT ¼ kÞΦ dðB; kÞð Þ¼
! 1� e−ΛT :

(9)

Diverging from the Black–Scholes model, the introduction of jumps eliminates the
availability of a closed-form solution, necessitating numerical methods for root finding.
It’s important to note that the probability of observing k jumps over a period T, given by

Figure 5.
Numerical

demonstration of
optimal quantity

utilizing parameters
S0 ¼ 1; bμ ¼ 0:07;

T ¼ 0:3; bσ ¼ 0:15;
Λ ¼ 1:1;

B ¼ bB ¼ 0:97;

K*
¼ 1:02, resulting

in a* 5 8.29
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PðNT ¼ kÞ ¼ ðλTÞ
k

k! e−λT, becomes increasingly negligible for larger values of k, especially
over short time horizons where the likelihood of numerous jumps is limited.
This characteristic significantly simplifies the numerical root search process, as it
allows the search to be constrained to a manageable range, such as up to k 5 5.

In the visualization, the default probability is depicted in orange, while the probability of
the stock price ST breaching the barrier level B is illustrated in blue, with both probabilities
viewed as functions of B. This graphical representation facilitates the identification of a
unique barrier level B at which these two probabilities agree, supporting the previous
argument. This concludes S2 for this jump-diffusion model. Next, we reintroduce the put
option as

PK ¼ K � STð Þ
þ
¼
X∞

k¼0

PðNt ¼ kÞ K � SðkÞ0 eðμ�1=2σ2
kÞTþσkWT

� �þ

d
X∞

k¼0

PðNT ¼ kÞPBS SðkÞ0 ; σk;K
� �

:

Given the adjusted parameters, it’s crucial to understand that the inside of the function
equates to a European put option within the Black–Scholes framework, written on strike K.
Henceforth, this formula is denoted as PBS SðkÞ0 ; σk;K

� �
, where SðkÞ0 and σk are the initial stock

price and volatility adjusted for k jumps, respectively. In subsequent discussions, whenever
we refer to PK, it specifically denotes the put option priced in the context of this jump-
diffusion market.

Theorem 4.1. (Correlation in the Merton jump-diffusion model) In the Merton
jump-diffusion model with lognormal jumps and given parameters σ, μ, μJ,
σJ > 0, (conditional) P-dynamics as given in (8) and barrier B obtained via
(9), we have

Corr 1fST≤Bg;PK
� �

¼
1

f ðPKÞ

X∞

k¼0

PðNT ¼ kÞhðK; kÞ;

where

hðK; kÞ ¼

e−ΛTE PBS SðkÞ0 ; σk;K
� �h i

; K ≤K*
k;

1� e−ΛT
� �

K � E PBS SðkÞ0 ; σk;K
� �h i� �

�SðkÞ0 eμTΦ dðB; kÞð Þ � σk

ffiffiffiffi
T
p �; else

8
>>>>>><

>>>>>>:

for K*
k ¼ SðkÞ0 edðB;kÞσk

ffiffiffi
T
p
þðμ−1=2σ2

kÞT and

f ðPKÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e−ΛT 1− e−ΛTð Þ E½ð P2
K �− E½PK �

2
Þ

q

. Further, we can conclude that there is a unique

bK
*
maximizing the correlation above.
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Example 4.2. (Correlation example including derivative) The selected time horizon
for this numerical analysis is T 5 0.3 years, corresponding to approximately
fourmonths, deemedapractical duration for assessing exposure. Furthermore,
we chose the same parameters as for the Black–Scholes example to draw
comparisons. The barrier B was estimated via the root search as depicted in
Figure 6.Theanalysis again confirms the expectations as auniquemaximum is
found. In contrast to theBlack–Scholesmodel, however, the correlation function
is not piecewise. Figure 7 displays the numerical example.

Additionally, Figure 8 displays the optimal quantity from Lemma 1.1 for the strike price
established in Example 4.2.

5. Merton jump-diffusion model with constant negative jumps
The preceding section explored the incorporation of lognormal jumps as an augmentation to
the Black-Scholes framework. This section draws inspiration from the L�evy factor portfolio
default model outlined in Mai and Scherer (2017). Within that context, we introduce a L�evy
subordinator, Lt, characterized as being of the Compound Poisson Process (CPP) type with a
constant jump size θcredit > 0, expressed as

Lt ¼ θcreditNt;

where Nt denotes a CPP. Accordingly, a firm’s default is the initial time Lt surpasses a unit-
exponential threshold. Conceptually, an increase in Lt (presuming the absence of drift)
diminishes the gap to the default threshold, thus potentially elevating the default risk. If we
assume that this specific process also influences the dynamics in a structural framework, we
can integrate this notion seamlessly into this paper by suggesting that a jump in the process

Figure 6.
Numerical root search
for B with parameters

S0 5 1, μ 5 0.07,
T 5 0.3, σ 5 0.15,

Λ 5 1.1, λ 5 1.5,
μJ 5 0.02, σJ 5 0.1
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Figure 7.
Numerical illustration
of the correlation
function and its
derivative for the
parameters S0 5 1,
μ 5 0.07, T 5 0.3,
σ 5 0.15, Λ 5 1.1,
λ 5 1.5, μJ 5 0.02,
σJ 5 0.1, B ≈ 0.97
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Nt signifies a detrimental impact on the asset value St, typically correlating with the advent
of adverse news. This rationale motivates the examination of the subsequent SDE:

dSt ¼ St μdt þ σdWt þ ð1� θassetÞdNtð Þ: (10)

This represents a jump-diffusion model characterized by exclusively constant negative
jumps 0 < θasset < 1 [16].

Lemma 5.1. (Solution of SDE) In this model, the solution of the SDE (10) is given by

ST ¼ S0 exp μþ λð1� θassetÞ � 1
�
2σ2

� �
T þ σWT

� �
ð1� θassetÞ

NT ; S0 > 0:

We see that by conditioning on the number of jumps k and introducing an adjusted starting
value SðkÞ0 ¼ S0ð1− θassetÞ

keλð1−θassetÞ, we are again situated in the Black–Scholes world. The
mutual independence ofNt andWt follows again by construction. The option and exposure’s
maturity timeT is set to coincide, ensuring that the distributionsmatch at this specific point:

PðST ≤BÞ ¼
X∞

k¼0

PðNT ¼ kÞΦ
ln

B

SðkÞ0

 !

� μ� 1
�
2σ2

� �
T

σ
ffiffiffiffi
T
p

0

B
B
B
B
@

1

C
C
C
C
A

d
X∞

k¼0

PðNT ¼ kÞΦ dðB; kÞð Þ¼
! 1� e−ΛT :

(11)

Figure 8.
Numerical

demonstration of
optimal quantity

utilizing parameters
S0 ¼ 1; μ ¼ 0:07;

T ¼ 0:3; σ ¼ 0:15;
Λ ¼ 1:1; λ ¼ 1:5;

μJ ¼ 0:02; σJ ¼ 0:1;

B≈ 0:97; bK
*
¼ 1:03,

resulting in a* 5 6.85
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In congruence with the last section, a numerical root search needs to be deployed, and by
simulating for k 5 5, we obtain the following graphic:

We again note that parameter estimation (as in the lognormal jump-diffusionmodel) is left
for further research. The default definition on the credit side of this model is driven by the
L�evy subordinator θcreditNT, while on the structural side, it is influenced by the dynamics of
ST, which also depends on a process NT. We assume that these processes are the same to
enable meaningful comparisons. Contrary to the asset side, the credit side yields the
possibility to calculate the jump size θcredit explicitly.

Lemma 5.2. (Choice of jump size θcredit > 0) In this specific model, we have

θcreditd� ln 1�
Λ
λ

� �

:

Therefore, we need to ensure Λ < λ. More on this condition can be found in Example 5.4.

This concludes S1 and S2 for this jump-diffusion model. By using the adjusted starting
value SðkÞ0 from above, we reintroduce the put option as

PK ¼ K � STð Þ
þ
¼
X∞

k¼0

PðNt ¼ kÞ K � SðkÞ0 eðμ�1=2σ2ÞTþσWT

� �þ

d
X∞

k¼0

PðNT ¼ kÞPBS SðkÞ0 ; σ;K
� �

:

Theorem 5.3. (Correlation in the jump-diffusionmodel with constant negative
jumps) In the jump-diffusion model with constant negative jumps
0 < θasset < 1, given parameters σ, μ > 0 and barrier B obtained via (11),
we have

Corr 1fST≤Bg;PK
� �

¼
1

f ðPKÞ

X∞

k¼0

PðNT ¼ kÞhðK; kÞ;

where

hðK; kÞ ¼

e−ΛTE PBS SðkÞ0 ; σ;K
� �h i

; K ≤K*
k;

1� e−ΛT
� �

K � E PBS SðkÞ0 ; σ;K
� �h i� �

�SðkÞ0 eμTΦ dðB; kÞð Þ � σ
ffiffiffiffi
T
p �; else
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>>>>>><

>>>>>>:
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ffiffiffi
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þðμ−1=2σ2ÞT and f ðPKÞ ¼
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. Further,

we can conclude that there is a unique bK
*
maximizing the correlation above.
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Example 5.4. (Correlation example including derivative) The selected time
horizon for this numerical analysis is T 5 0.3 years, corresponding to
approximately four months. Furthermore, the barrier B was estimated via
the root search as depicted inFigure 9.We choose θasset 5 0.4, whichmeans
a jump of NT results in a 40% decrease of ST. Furthermore, Lemma 5.2
yields λ > Λ, restricting the choice of λ. Figure 10 displays the results:

Additionally, Figure 11 displays the optimal quantity from Lemma 1.1 for the strike price
established in Example 5.4.

6. Application to risk capital under solvency II
Building upon the foundation laid in the introduction, our goal is to ensure that

SCRX � SCRX−PK > PK;0;

where PK denotes the put option derived in preceding sections through the maximization of
its correlation with the default indicator. In this section, we shift our focus to S4 and
demonstrate through numerical analysis that for each of the three models discussed,
integrating the aforementioned put option into the portfolio significantly diminishes the risk
capital, thereby mitigating the potential for unexpected loss. In the definition of the solvency
capital requirement,α corresponds to 0.995 and represents the confidence level. Furthermore,
in the parts of the analysis incorporating the option, the price for the option PK,0 is always
included. We note that, the addition of such put options should not result in a change in the
expected loss but rather in the unexpected loss. This arises from the fact that while the
payout of the put option is considered under P, its price is evaluated under Q and is
discounted over the time horizonT. Since the time horizon we consider is relatively short, the

Figure 9.
Numerical root search
for B with parameters

S0 5 1, μ 5 0.07,
T 5 0.3, σ 5 0.15,

λ 5 1.5, Λ 5 1.1, k 5 5
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Figure 10.
Numerical illustration
of the correlation
function and its
derivative for the
parameters S0 5 1,
μ 5 0.07, T 5 0.3,
σ 5 0.15, Λ 5 1.1,
λ 5 1.5, θasset 5 0.4
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difference arising from the change of measure should not be significantly large. Therefore,
the shift in the expected loss should be minimal and is expected to be reflected in the
subsequent numerical analysis. In our analysis across different markets, we strive for
numerical consistency by adopting identical parameter values in the correlation function
examples. It is important to note that the selection ofT5 0.3 andΛ 5 1.1 results in amedium
default probability. This choice was deliberate, the rationale being that the impact of our
analysis becomes increasingly pronounced with higher default probabilities. Therefore, we
can validate our findings more robustly by focusing on the lower end of the default
probability spectrum. This approach ensures that our conclusions are not merely artifacts of
high-risk scenarios but are applicable across a broader range of conditions, reinforcing our
results’ validity. Figure 12 displays the numerical outcome for all considered markets.

In the respective upper graph, we observe the original loss distribution characterized by a
binary profile, wherein losses are either absent or amount to 1 � κ 5 0.6, with κ 5 0.4
representing the recovery value. Here, the exposure is defined asC5 1. In the expected lower
graphs, we discern the altered loss profiles after the strategic incorporation of one put option
into the portfolio on the left and the incorporation of a* put options on the right. Notably, a
shift of the unexpected loss towards the right is evident in all of the distributions. Adding the
put option(s) has displaced the loss profile, signifying a notable alteration in the portfolio’s
risk dynamics. Nonetheless, as expected, the expected loss barely changed. Despite potential
limitations in the underlying Black–Scholes model for ST, the analysis of the loss profile
aligns with our expectations. In comparison to the Black–Scholes model, our findings for the
model with logjumps highlight a similar outcome. While the unexpected loss could be
reduced, the expected loss remained similar, as expected. The final model we explored for ST,
inspired by the principles of L�evy factor models, incorporated a jump-diffusion model
characterized by exclusively negative constant jumps. Compared to preceding models, the
outcomes generated by this model appear exceptionally favorable. This observation is
primarily attributed to the parameter selection strategy employed. As previously discussed,

Figure 11.
Numerical

demonstration of
optimal quantity

utilizing parameters
S0 5 1, μ 5 0.07,
T 5 0.3, σ 5 0.15,

Λ 5 1.1, λ 5 1.5,
K* 5 1.18, resulting

in a* 5 1.53
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we need to have Λ < λ and 0 < θasset < 1. Hence, the modeler has two parameters to choose.
Specifically, these parameters must be chosen so that the original loss is not significantly
underestimated, which is challenging without comparisons to other models. Consequently,
the choice of these parameters is crucial for themodel’s outcome, leading to an elevatedmodel
risk. Therefore, despite its intuitive appeal, this model should only be used for practical risk
assessment tasks if the model risk can be adequately addressed. This concludes S4.

6.1 Comparison of numerical examples
In this section, we aimed to maintain consistency in our parameter choices to enable
meaningful comparisons. We set the company’s default intensity parameter at Λ 5 1.1,
corresponding to an approximate 28% default probability. The drift, volatility, and time
were fixed at (μ, σ, T) 5 (0.07, 0.15, 0.3). The confidence level was inherently determined by
SCR regulations, with α 5 0.995, and the initial value was set to S0 5 1. For the jump-
diffusion models, we selected Poisson process intensity parameters of λ 5 1.5 for both the
log-normal model and the model with constant negative jumps. Table 1 compares the
outcomes of different parameters, specifically the obtained barrier for the given market
parameters, the optimal strike with corresponding correlation and quantity, and the
unexpected loss (UEL) both before and after hedging with a* respective put options.

It becomes apparent that the model with constant negative jumps yields the smallest
optimal quantity while still achieving the highest reduction in unexpected loss (UEL). As
previously discussed, this outcome is significantly influenced by the choice of λ given the
default intensity parameter Λ and θasset. In this numerical analysis, the parameters were
selected so that the original loss closely matches that of the other two models, as reflected in
the table. In practice, however, this comparison may not always be available, leaving the
modeler with limited guidance for parameter choice beyond λ > Λ, thereby introducing
elevated model risk. For this specific numerical example, the Black–Scholes model and the
model with lognormal jumps exhibit similar behavior. Consequently, the choice rests
between the simplicity of the Black–Scholes model and the more realistic framework of the
jump-diffusion model with lognormal jumps. Further analysis could explore scenarios with
varying jump size parameters.

7. Discussion and conclusion
This paper focused on mitigating existing credit debt through derivatives. This concept
holds particular relevance for (insurance) companies who aim to retain the risk in-house
while safeguarding against exposure. Diverging from conventional literature, our approach
used structural default models assuming a pre-established default model. This strategic
choice facilitates integrating this paper’s insights into existing risk management
frameworks. Furthermore, by adopting a realistic view that defaults can precede a

Parameter Black–Scholes model Lognormal jumps Constant negative jumps

Barrier B 0.97 0.97 0.79
Correlation 0.87 0.86 0.87
Optimal Strike K* 1.02 1.03 1.18
Optimal Quantity a* 8.29 6.85 1.53
UEL �0.77 �0.78 �0.77
UEL after hedging �0.61 �0.64 �0.46
Difference in UEL 0.16 0.14 0.31
Source(s): The table is provided by the author

Table 1.
Comparison of the

models with italicized
best values

Journal of
Derivatives and

Quantitative
Studies:선물연구

309



complete depletion of company stock value, we transitioned from Merton’s original asset
value-based default distance to considering stock price breaches of a new, positive barrier
B > 0. The loss in question was then defined relative to this stock price threshold in (1),
including the maturity T. The objective was to bridge the previously established default
model with any given model for ST, imposing equivalence exclusively at maturity T. This
equivalence at maturity T, crucial for comparing the loss profile against derivatives written
on ST, laid the groundwork for examining the efficacy of incorporating a European put
option, denoted as PK, in counterbalancing potential losses as ST decreases. We realized that
the introduced loss profile (1) closely resembles a digital put option as a function of ST. We
then further argued, as these derivatives are not traded, that one should be able to partially
represent the loss function by a European put option PK. As decreasing values in ST lead to
an elevated risk of a loss, the inclusion of such a put option, as it then increases in value,
should be able to partially offset the resulting loss. Understanding that our goal was to
achieve the best linear fit between the original loss X and the portfolio a(PK � PK,0), we
defined Pearsons’s correlation as the objective function in our optimization problem stated in
(2). This approach ultimately determines a unique strike. Having established this strike, we
addressed howmany such options should be purchased in (3). We then commenced with the
Black–Scholes model. As the most tractable model for ST, it allowed for parameter
estimation, as wewere able to, in addition to the equivalence inT, estimate parameters based
on a least squares criterion for distributions for all other time points. Next, we extended the
model with lognormal jumps and observed similar behavior of the correlation function, as a
unique maximum was found. Parameter estimation, however, is quite difficult as adding
jumps renders the paths of St not continuous. Furthermore, the jump parameters extend the
complexity. Hence, we imposed distributional equivalence in T and left the parameter
estimation for further research. The third model we considered was motivated by the L�evy
factor model introduced in Mai and Scherer (2017). Considering a jump-diffusion process
with solely negative jumps, we also found a unique maximizer of the optimization problem.
However, the constant jump size has to be chosen explicitly, reducing the applicability of this
model. Comparative loss analyses across these models affirmed the anticipated outcomes,
albeit with a critical view of the practical deployment of the constant negative jumpmodel. In
addition, adopting Pearson’s correlation can also be challenged. Furthermore, alternate loss
functions, increased model sophistication (e.g. via stochastic volatility), and refined
parameter estimation for jump-diffusion processes could be considered. Enhancing the
numerical analysis with different maturities T also allows future research. A significant
aspect of our study is the focus on numerical analysis rather than empirical estimation,
particularly in jump-diffusion models. While empirical estimation would involve parameter
estimation from market data, especially for models incorporating jumps, this process is
notoriously complex and falls outside the scope of our current work. Accurately capturing
the dynamics of defaulted companies’ stock data and corresponding historical put options
poses considerable challenges, primarily due to the availability and quality of such data.
Moreover, parameter estimation for jump models is intricate, requiring sophisticated
techniques and assumptions to ensure reliability and accuracy. Although we have not
undertaken empirical estimation in this study, future research could explore this avenue by
developing robust methods for parameter estimation from market data. This would involve
identifying suitable datasets and employing advanced statistical techniques to capture the
nuances of market behavior in the presence of jumps. Such efforts would enhance
the practical applicability of our approach and contribute to a deeper understanding of the
empirical relationships between credit risk and equity markets. By addressing these
challenges, future work can build on our findings and further refine the integration of credit
risk models with real-world data. The optimization problem’s underlying constraints,
particularly concerning the SCR, might also warrant reevaluation. Moreover, while the
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methodology presupposes the availability of derivatives for listed, liquid companies, the idea
can be extended to unlisted entities via correlated liquid indices, factoring in a “correlation
error” to adjust the findings accordingly.

Notes
1. Merton originally introduced debt as the outstanding obligations with a fixed maturity T, and,

hence, assumes debt to be constant over time t ≤ T.

2. As the number of outstanding shares N is a constant, the default time is ultimately driven by the
dynamics of St. This change from asset to stock price dynamics has also been used in Crosbie (2003)
by scaling the volatility parameter accordingly; hence, this consideration is feasible.

3. The introduced threshold B is constant for the specific maturity T, and it is noteworthy that for
small T, this barrier will be close to the current stock price. This proximity arises because the
likelihood of the stock price falling substantially in a very short time interval is low, thus
necessitating the default barrier to be relatively near the current price. This relationship is
corroborated by the numerical analysis discussed later.

4. Given that the option’s maturity aligns with that of the exposure and the model parameters are
predetermined, the strike price becomes the sole variable.

5. The comparison of the to-be-paid price for the options implies a challenge in measuring the
reduction in SCR inmonetary units. This ambiguity complicates direct comparisons. However, this
criterion sets the absolute minimum requirement that must bemet. Further details on this topic will
be explored in the numerical analysis of the SCR reduction later on.

6. This enables companies to adapt the results of this paper into their already existing risk
management process.

7. This is done via the credit triangle, which approximates the hazard rate. For derivations, we refer
the reader to [Packham et al., 2013; Appendix].

8. Following the ISDA convention, the exponential law for the univariate default time of a company is
a natural assumption.

9. We do this by finding a unique maximum of the objective function, first disregarding the capital
constraint. This will be considered by numerical analysis in S4.

10. For a complete overview of default modeling and related topics within the structural approach, we
refer to Acharya (2005), Lipton and Rennie (2011).

11. For mathematical compatibility we choose the maturity of the option to coincide with T, however,
any available option at the market with maturity greater or equal than T will do. We propose
choosing the first available maturity after T.

12. Given that in the Black–Scholes model, the drift rate is implicitly given as a function of the risk-less
rate, the optimization could be reduced to two parameters. However, this implies knowledge about
potential risk-less rates, and, hence, we include the parameter in the estimation as well.

13. This grid implies that there exists an i ∈ [N] such that ti 5 T.

14. In the above numerical example, we choseT5 0.3.We can obtainwith the above formula,B5 0.97,
which coincides with the estimation results, bB.

15. The barrier in this particular example is relatively high, considering S0 5 1. As argued before, this
comes from the short time horizon T 5 0.3, as the Brownian motion is unlikely to fall significantly
in a short time window, and, hence, to reflect default, the barrier needs to be higher.

16. As the asset side assumes a relative change and the credit size a total change, it is natural to assume
θcredit ≠ θasset.

17. Follows from the fact that the price of the put option increases in K.
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Appendix
Proofs
Proof of Theorem 3.1. The proof consists of three main steps, i.e.

(i) Derive the correlation function in this model by calculating each quantity.

(ii) Derive the derivative of the correlation function by calculating the derivative of each part and
piecing them together.

(iii) Show that there exists a K* such that

∀K < K* :
v

vK
Corr 1fST≤Bg;PK

� �
> 0;

∀K > K* :
v

vK
Corr 1fST≤Bg;PK

� �
< 0:

This yields the existence of a maximum. For uniqueness, we then show

lim
K→∞

v

vK
Corr 1fST≤Bg;PK

� �
¼ 0:

Step (i): Derivation of the correlation function

Journal of
Derivatives and

Quantitative
Studies:선물연구

315

https://doi.org/10.1016/j.cam.2020.113037
https://doi.org/10.1016/j.cam.2020.113037
https://linkinghub.elsevier.com/retrieve/pii/S0377042720303289
https://doi.org/10.1111/j.1540-6261.1984.tb03649.x
https://books.google.de/books?id=kwqzPAAACAAJ
https://books.google.de/books?id=kwqzPAAACAAJ
https://doi.org/10.1080/26437015.2023.2224108
https://doi.org/10.1201/9780203485217
https://www.taylorfrancis.com/books/9781135437947
https://www.taylorfrancis.com/books/9781135437947
https://doi.org/10.1111/j.1540-6261.2004.00650.x
https://quant.opengamma.io/Pricing-and-Risk-Management-of-Credit-Default-Swaps-OpenGamma.pdf
https://quant.opengamma.io/Pricing-and-Risk-Management-of-Credit-Default-Swaps-OpenGamma.pdf
https://doi.org/10.1007/s10436-005-0023-x
https://doi.org/10.17016/feds.1997.15
https://doi.org/10.17016/feds.1997.15
https://www.federalreserve.gov/econres/feds/a-jump-diffusion-approach-to-modeling-credit-risk-and-valuing-defaultable-securities.htm
https://www.federalreserve.gov/econres/feds/a-jump-diffusion-approach-to-modeling-credit-risk-and-valuing-defaultable-securities.htm


Expectation and variance of loss indicator
With the connection to the existing default model, we can see that

Var 1fST≤Bg
� �

¼
ð7Þ

1� e−ΛT
� �

� 1� e−ΛT
� �2

¼ e−ΛT 1� e−ΛT
� �

:

Furthermore, we have

E 1fST≤Bg
� �

¼ P ST ≤Bð Þ¼ð7Þ 1� e−ΛT :

Expectation and variance of put option payout
We know

E½PK � ¼ KΦ dðKÞð Þ � S0eμTΦ dðKÞ � σ
ffiffiffiffi
T
p� �

; (A.1)

where

dðKÞ ¼
ln K

S0

� �
� μ� 1

2σ
2

� �
T

σ
ffiffiffiffi
T
p : (A.2)

Next, we have a look at the second moment, i.e.

E
�
P2
K

�
¼ E 1fK>STg K � S0eðμ�1=2σ2ÞTþσWT

� �2
� �

¼ K2Φ dðKÞð Þ � 2KS0eμTΦ dðKÞ � σ
ffiffiffiffi
T
p� �

þS2
0e

2ðμþ1=2σ2ÞTΦ dðKÞ � 2σ
ffiffiffiffi
T
p� �

;

(A.3)

where in the last step, we have used a quadratic expansion again. With these results, we also obtain the
variance of PK.

Covariance between loss indicator and put option

E 1fST≤BgPK
� �

¼ E 1
1ffiffi
T
p WT≤dðBÞ

n o1fK>STg K � S0eðμ−1=2σ2ÞTþσWT

� �
2

4

3

5

¼ðA1Þ KΦ min dðBÞ; dðKÞf gð Þ � S0eμTΦ min dðBÞ; dðKÞf g � σ
ffiffiffiffi
T
p� �

:
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Using this, we calculate the covariance via:

Cov 1fST≤Bg;PK
� �

¼ E 1fST≤BgPK
� �

� E 1fST≤Bg
� �

E PK½ �

¼

e−ΛTE½PK � forK ≤B;

1� e−ΛT
� �

K � E½PK �ð Þ � S0eμTΦ dðBÞð Þ � σ
ffiffiffiffi
T
p �

forK > B;

8
><

>:

(A.4)

where B is taken from (7). Putting (A.1), (A.3) and (A.4) together yields the correlation function.
Furthermore, we can rearrange (7) to find dðBÞ ¼ Φ−1 1− e−ΛTð Þ explicitly in this model.

Step (ii): Derivation of the derivative

Next, we calculate the derivative for each part and, ultimately, the correlation function.

Derivative of moments of put option payout
We start with the price of the put:

vE½PK �

vK
¼ Φ dðKÞð Þ þ f dðKÞð Þ

1

σ
ffiffiffiffi
T
p � S0eμTf dðKÞ � σ

ffiffiffiffi
T
p� � 1

σ
ffiffiffiffi
T
p

K
:

Next, we calculate the derivative of the second moment of PK:

vE
�
P2
K

�

vK
¼
ðA3Þ
¼ 2KΦðdðKÞÞ þ KfðdðKÞÞ

1

σ
ffiffiffiffi
T
p � 2S0eμTΦ

�
dðKÞ � σ

ffiffiffiffi
T
p �

� 2S0eμTf
�
dðKÞ � σ

ffiffiffiffi
T
p � 1

σ
ffiffiffiffi
T
p þ S2

0e
2ðμþ1=2σ2ÞTf

�
dðKÞ

� 2σ
ffiffiffiffi
T
p � 1

σ
ffiffiffiffi
T
p

K
:

Derivative of covariance of loss indicator and put option payout
Using this result, we can calculate:

v

vK
Cov 1fST≤Bg;PK

� �
¼

e−ΛTvE½PK �

vK
forK < B;

1� e−ΛT
� �

1�
vE½PK�

vK

� �

forK > B:

8
>>>><

>>>>:

Before continuing further, we owe the reader an argument for differentiability in K 5 B. Hence, we
check if the left limit agrees with the right limit. With the continuity of the derivative of the price of the
put, we then have the following condition:
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lim
K↗B

e−ΛTvE½PK �

vK
¼ lim

KaB
1� e−ΛT �

vE½PK�

vK
þ e−ΛTvE½PK �

vK

5 lim
KaB

vE½PK�

vK
¼ 1� e−ΛT :

(A.5)

Now, we calculate with the definition of d(K):

lim
KaB

vE PK½ �

vK
¼
ð7Þ
1� e−ΛT þ f d Bð Þð Þ

1

σ
ffiffiffiffi
T
p � S0eμTf d Bð Þ � σ

ffiffiffiffi
T
p� � 1

σ
ffiffiffiffi
T
p

B

¼ 1� e−ΛT þ
1

ffiffiffiffiffi
2π
p

σ
ffiffiffiffi
T
p e−d Bð Þ2=2 1�

S0eμT

B
eln B=S0ð Þ−μT

� �

¼ 1� e−ΛT ;

completing (A.5), and, hence, we write K ≤ B in the derivative of the covariance above.

Derivative of 1/f(PK)
Using the chain and product rule, we obtain:

v

vK
1

f ðPKÞ
¼ −

1
2
e�ΛT 1� e�ΛT

� �
VarðPKÞ

� �−3
2

3 e−ΛT 1� e−ΛT
� � v

vK
VarðPKÞ

� �

;

(A.6)

where f ðPKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−ΛT 1− e−ΛTð Þ VarðPKÞð Þ

p
.

Derivative of correlation function
In total, we then get

v

vK
Corr 1fST≤Bg;PK

� �
¼

v

vK
Cov 1fST≤Bg;PK
� � 1

f ðPKÞ
þ Cov 1fST≤Bg;PK

� � v

vK
1

f ðPKÞ

¼

e−ΛT

f ðPKÞ

vE½PK �

vK
þ e−ΛTE½PK �

v

vK
1

f ðPKÞ
forK ≤B;

1� e−ΛT

f ðPKÞ
1�

vE½PK �

vK

� �

þ 1� e−ΛT
� �

K � E½PK �ð Þ � A
� � v

vK
1

f ðPKÞ
forK > B;

8
>>>>>>>>>>><

>>>>>>>>>>>:

(A.7)

where A ¼ S0eμTΦ dðBÞ− σ
ffiffiffiffi
T
p� �

.
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Step (iii): Existence and uniqueness

In general, we know that the variance of the put option decreases with increasing K, as higher strike
prices lead to lower sensitivity of the option price to the underlying stock price, thus reducing the
variance. Hence, using the definition of f(PK) and (A.6), we have

1
f ðPKÞ

≥ 0;
v

vK
1

f ðPKÞ
≥ 0: (A.8)

Therefore, we see that the correlation function is increasing for allK≤B [17] and, hence, the derivative is
positive for this part. Therefore, any extremum of this function should be larger than B, and hence, we
focus on the right side of the correlation function and its derivative.

Existence
For all K > B, we reformulate the derivative via

v

vK
Corr 1fST≤Bg;PK

� �
¼ 1� e−ΛT
� � v

vK
1

f ðPKÞ
K � E½PK�ð Þ

� �

�
v

vK
1

f ðPKÞ
A

� �

:

Let gðKÞdK − E½PK �. We clearly know that g(K) ≥ 0, g(K) is monotonically decreasing, and, hence,

v

vK
gðKÞ < 0: (A.9)

Lastly, as E½PK� approaches K for large strikes, we have

lim
K→∞

gðKÞ ¼ 0: (A.10)

Putting these arguments together, we can see that

∃K* : ∀K > K* : gðKÞ < Cd
A

1� e−ΛT
: (A.11)

But then we have that there exists a K* such that for all K > K*, we have

v

vK
Corr 1fST≤Bg;PK

� �

¼ 1� e−ΛT
� � v

vK
1

f ðPKÞ

� �

gðKÞ þ
v

vK
gðKÞ

� �
1

f ðPKÞ

� �

�
v

vK
1

f ðPKÞ
A

� �

<
ðA:9Þ;ðA:8Þ

1� e−ΛT
� � v

vK
1

f ðPKÞ

� �

gðKÞ �
v

vK
1

f ðPKÞ
A

� �

<
ðA:11Þ

1� e−ΛT
� � v

vK
1

f ðPKÞ

� �
A

1� e−ΛT �
v

vK
1

f ðPKÞ
A

� �

¼ 0:
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This means, that there existsK* such that for allK<K* the derivative of the correlation is positive
and for all K > K* negative, and, hence, a maximum.

Uniqueness
Uniqueness follows if we show that for allK>K*, the derivative of the correlation converges to 0. First,
due to (A.10), g(K) monotonically decreasing and non-negative, and

lim
K→∞

1
f ðPKÞ

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e−ΛT 1� e−ΛT
� �

Var STð Þ

q

¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e−ΛT 1� e−ΛT
� �

S2
0e

2μT eσ2T � 1
� �r ;

we see from (A.7), it suffices to have

lim
K→∞

v

vK
1

f ðPKÞ
¼ 0:

However, as we have

lim
K→∞

v

vK
1

f ðPKÞ

¼ −
1
2

e�ΛT 1� e�ΛT
� �

S2
0e

2μT eσ2T � 1
� �� �−3

2
e−ΛT 1� e−ΛT

� �
lim
K→∞

v

vK
VarðPKÞ

� �

;

this follows from Lemma A.1.

Lemma A.1. (Limit of derivative of variance of put option)We have

lim
K→∞

v

vK
VarðPKÞ

� �

¼ 0:

Proof. First, since h(K) d Var(PK) is monotonically decreasing and converging to

L ¼ VarðSTÞ ¼ S2
0e

2μT eσ2T − 1
� �

, we have

∀ε > 0 ∃δ > 0 : hðKÞ � Lj j < ε ∀K > δ: (A.12)

As h(K) is also differentiable, we can apply the Mean-Value-Theorem (see, e.g. [Rudin, 1976, Theorem
5.10.]) to see that for any interval [K, K þ 1] for large K > δ, there exists K* ∈ (K, K þ 1) such that

v

vK
h
�
K*
�
¼ hðK þ 1Þ � hðKÞ:

With this, we can use the definition of the limit again:
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v

vK
h
�
K*
�
� 0

�
�
�
�

�
�
�
� ¼ hðK þ 1Þ � hðKÞj j≤ hðK þ 1Þ � Lj j þ hðKÞ � Lj j

¼
ðA12Þ

2ε ∀K* > K > δ:

As K → ∞ implies K* → ∞ by construction (K* > K > δ), we have

lim
K→∞

v

vK
hðKÞ ¼ lim

K→∞

v

vK
h
�
K*
�
¼ 0:

Proof of Theorem 4.1. As, conditioned on the number of jumps, this model relates to the Black–
Scholes model, we aim at applying the arguments from the proof of Theorem 3.1, albeit different
parameters, namely different starting value, adjusted volatility, and adjusted (A.2). To apply all
arguments, especially those including limits, we need to ensure exchangeability of the limit w.r.t. the
strike and the infinite sum stemming from the number of jumps. For this, we consider

X∞

k¼0

gðK; kÞd
X∞

k¼0

PðNT ¼ kÞhðK; kÞ:

Here, h(K, k) relates to the Black–Scholes model for any fixed k, and, hence, following the arguments in
the proof of Theorem 3.1, we have

∃M > 0 : hðK; kÞj j≤M :

Furthermore, we know that the density of a compound Poisson distribution decays exponentially fast,
and, hence, we have

∃C > 0; α > 0 : PðNT ¼ kÞj j≤Ce−αk:

This, however, implies that an integrable function dominates g(K, k), and, hence, the dominated
convergence theorem yields

lim
K→∞

X∞

k¼0

PðNT ¼ kÞhðK; kÞ ¼
X∞

k¼0

PðNT ¼ kÞ lim
K→∞

hðK; kÞ :

With this, all the arguments from Theorem 3.1 can be used with the adjusted parameters stated above.
We note that the constant limit for the variance differs, as can be found in Navas (2003). Additionally, in
contrast to the Black–Scholes model, we cannot derive d(B, k) explicitly but only by root search (see,
Figure (6)).

Proof of Lemma 5.1. Following the arguments in the proof of Merton (1976), we aim to solely
focus on pure jump effects, and, hence, wemust eliminate the incremental drift resulting from the jumps.
Given that these are relative changes, we have E½1− θasset� ¼ 1− θasset. As the jumps are solely negative,
we obtain the following final form of the SDE:

dSt

St
¼ μþ λð1� θassetÞð Þdt þ σdWt þ ð1� θassetÞdNt;

We then deploy [Tankov, 2003, Proposition 8.14] to find the solution.
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Proof of Lemma 5.2. As we impose distributional equivalence in T, we need to ensure (11).
Furthermore, we also describe default by checking if, at time T, the L�evy subordinator θcreditNT has
crossed the threshold ε ∼ exp(1). Hence, we need to choose the jump size, such that we ensure

PðθcreditNT ≥ εÞð11Þ ¼ 1� e−ΛT :

In particular, we need to have

PðθcreditNT ≥ εÞ ¼
X∞

k¼0

PðNT ¼ kÞ 1� e−θcreditk
� �

¼ 1� e−λT
X∞

k¼0

ðλTÞk

k!
e−θcreditk

¼ 1� e−λT 1−e�θcreditð Þ¼
! 1� e−ΛT :

The claim follows.
Proof ofTheorem 5.3. See proof of Theorem 4.1. The only difference is the parameters (no adjusted

volatility, slightly different starting value) and, therefore, the constant limit of the variance of ST.
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