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Abstract
Purpose –We study the problem of finding optimal locations for a suite of defense assets in order to protect
high-value tactical and strategic infrastructure across a vast geographical area. To this end, we present a multi-
type with non-overlapping coverage requirement as an extension to the classical formulation for the maximal
covering location problem (MCLP).
Design/methodology/approach – In our case study,we use open source geographic and demographic data from
Canadian sources as inputs to our optimization problem. Due to the complexity of the MIP formulation, we
propose a hybridmetaheuristic solution approach, forwhich a genetic algorithm (GA) is proposed and integrated
with local and large neighborhood search operators.
Findings – Extensive numerical experiments over different instances of the proposed problem indicate the
effectiveness of the GA-based solution in reducing the solution time by a factor of ten compared to the CPLEX
commercial solver while both approaches obtain solutions of similar quality.
Research limitations/implications – This research is limited to location planning of defense assets leveraging
geospatial data of Canada. However, the diverse Canadian geography is among the most challenging given
broad variability in population density and the vast size of the country leading to a large search space having
substantial variability in fitness performance.
Practical implications – Our findings demonstrate that for large-scale location searches, the GAwith a local
neighborhood search performs very well in comparison to CPLEX but at a fraction of the execution time.
Originality/value – Our findings provide insight into how to make improved decisions for the placement of
deterrence and defense systems and the effectiveness of a hybrid metaheuristic in addressing associated
computational challenges.
Keywords Defense and deterrence, Facility location planning, Maximal covering location problem,
Optimization, Genetic algorithm
Paper type Research paper

Introduction
Air defense power and dominance of homeland air and space domains is becoming
increasingly important for countries across the globe.With a limited number of defense assets,

JDAL
8,2

160

© J.D. Lessan andGeoff Pond. Published in the Journal of Defense Analytics and Logistics. Published by
Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY
4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for
both commercial and non-commercial purposes), subject to full attribution to the original publication and
authors. The full terms of this license may be seen at http://creativecommons.org/licences/by/4.0/
legalcode

The authors gratefully acknowledge the financial support of Defence Research and Development
Canada’s Centre for Operational Research and Analysis, and the insights shared byMs. Lynne Serre and
Dr Bao Nguyen.

The current issue and full text archive of this journal is available on Emerald Insight at:
https://www.emerald.com/insight/2399-6439.htm

Received 3 April 2024
Revised 30 September 2024
3 October 2024
Accepted 4 October 2024

Journal of Defense Analytics and
Logistics
Vol. 8 No. 2, 2024
pp. 160-178
Emerald Publishing Limited
2399-6439
DOI 10.1108/JDAL-04-2024-0007

http://creativecommons.org/licences/by/4.0/legalcode
http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/JDAL-04-2024-0007


one strategy for addressing a large number of potential threats is to properly deploy and utilize
available assets to detect and neutralize any incoming threats. However, determining where to
locate air defense assets like radars or missile batteries in order to protect high-value
infrastructure, cover dense populations or establish a shield over strategic points presents
several challenges. Every candidate point or defense system, for instance, has its own
geographic, logistic requirements and strategic importance. Based on these considerations, we
examine the question of how to best locate the resources needed to population areas. We
propose the multi-type, maximal covering location problem (MMCLP) with non-overlapping
coverage requirement as an extension to the classic MCLP. As a case study, we use open-
source geographic and demographic data from Canada in our optimization problem. The
complexity of the MIP formulation leads us to propose a metaheuristic solution, for which a
GA-based solution is proposed and integrated with local and large neighborhood refinement
strategies to solve the problem. Results from solving different instances of the location
problem support the effectiveness and consistency of the proposed GA-based solution for the
MMCLP in reducing the computational cost relative to the CPLEX commercial solver. Our
findings provide insights into how tomake improved decisions for the placement of deterrence
and defense systems. While our case study involves air defense, the model also has
applicability to radar applications, telecommunications and emergency services.

The paper is structured as follows: in the next section, we present a review of the relevant
literature; we then discuss our methodology and present the formulation of the proposed
optimizationmodel, followed by a description of our case study data.We then present our GA-
based solution method and share the results of our numerical experiments. In the last section,
we conclude with a summary of findings, insights and directions for further research.

Literature review
Background
Problems relating to location analysis are an integral part of strategic and operational planning.
Several variants of location analysis and planning problems can be found in the literature. These
problems differ in terms of their objectives, operational requirements, performancemetrics and side
constraints. Nonetheless, “demand points/sites” and “candidate points/sites” are among the key
components of any location planning problem. A candidate point (area) is a discrete point
(continuous area)where service-providing facilities such as defense assets (e.g. radars or surface-
to-air missile (SAM) batteries) can be located, while service-receiving points or areas that must
be covered are considered as demand points. Both candidate points and demand points can be
critical from various aspects such as logistic, geographic and strategic perspectives. It is usually
assumed that demand areas and candidate locations of servers are discrete sets. When either one
(or both) sets are continuous, the common approach is to transform it into discrete sets by
superimposing a grid over the continuous area and representing each grid space with a single
point. The performance metric (objective) is another common component of any location
planning problem.Commonobjectives that are considered in location problems include centrality
(e.g. median, center) and covering, and dispersion objectives which are generally defined in the
form of some service-related criteria. In most of the location planning problems, the metric
generally indicates the distance (time or their cost equivalent) between demand points and
candidate points (ReVelle and Eiselt, 2005). In what follows, a review of themedian (minisum)
problem (Cooper, 1963), center (minimax) problem (Hakimi, 1964) and covering problem
(Toregas et al., 1971; Church andReVelle, 1974) is presented, examining differentmodels and
their applications tomilitary settings and algorithms used to solve the corresponding problems.

Median, center and covering problems
The p-median problem is one of the most well-known location planning problems (Cooper,
1963). The objective of this problem is to determine the optimum location of pservice facilities
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among a number of candidate sites by minimizing the total coverage cost (e.g. weighted cost
equivalent of time or travel distance) between all demand locations and their nearest service-
providing facilities. Depending on its application, it is usually assumed that the serving/
covering cost of a demand at each point is determined by themagnitude (value) of the demand,
the importance of satisfying that demand or the travel (distance or time) cost needed to acquire
the demand from its nearest facility. One important issue with the p-median problem is its
tendency to favor those demand points which are naturally located near to the located facility
(service) centers. To address this shortcoming, the p-center (also called minimax) location
planning problem was introduced by Hakimi (1964). The objective of the p-center location
planning problem is minimizing the maximum service cost from all demand points to their
nearest facility.

The coverage problems are concerned with optimally locating facilities using a performance
measure called coverage. In these problems, however,when a (demand) point iswithin amaximum
distance of a service providing facility, it is considered as a covered demand point. The set covering
location problem (SCLP) was introduced by Toregas et al. (1971) who defined coverage as a
measure of effectiveness in locating facilities. By doing so, the problem formulation
determines the minimum number of facilities that should be located such that at least one
facility is located within a specified maximum distance of each demand point. In the SCLP, all
facilitieswithin reach (S) of the demand point can provide coverage for that demand point. As a
result, the SCLP may provide several facilities to cover a single demand point. The MCLP is
similar to the p-median problem as the number of facilitieswhichmust be located is limited to a
predetermined number, p. The MCLP is commonly used for location problems with resource
constraints (ReVelle and Williams, 2001). The objective, however, is maximizing the total
covered demand which falls within a critical distance or desired maximum distance.

Military application of location planning problems
Infrastructure protection
Infrastructure protection is one of the areas where location planning problems are utilized for
military purposes, in order to build ormaintain some level of preparedness or to protect critical
infrastructure from hostile attacks.

With regards to themedian and center facility location approach, in the context ofmilitary and
defense location planning, Murty and Djang (1999) applied a p-median model for determining
optimal sites for a base, secondary and mobile trainers. Church (2004) and Church and
Scaparra (2007) determined the most critical r-facilities out of p-facilities with highest impact
during a possible interdiction. Scaparra and Church (2008) then used a p-median formulation
for the deployment of protective measures to minimize the effect of attacks on facilities. Dong
et al. (2009) identified a solution strategy for protecting critical facilities while maximizing
system satisfaction in the event that only a subset of those critical facilities is destroyed. Sathe
and Miller-Hooks (2005) located a limited number of protecting forces to cover the highest
number of facilities under travel times and the demand uncertainties while minimizing cost
and maximizing secondary coverage. Dawson et al. (2007) applied the p-median model in US
Air Force Intercontinental Ballistic Missile (ICBM) systems for optimally locating defensive
elements. BothBoardman et al. (2017) andHan et al. (2016) employed game theory to identify
optimal locations for surface-to-air missile batteries defending against attacking missiles.

As discussed in the previous section, SCLP andMCLP are other integral parts of the literature
on facility location models applied to various military settings. In this regard, Arslan (2009)
located optimal alert sites to protect Turkish airspace when anticipating a changing threat.
Sarikaya (2009) used an MCLP to cover airspace regions by optimally allocating airborne
early warning and control aircraft. Overholts et al. (2009) applied an MCLP for improving
military maintenance scheduling activities of ICBM systems within a geographically
dispersed service area and in consideration of desired security levels. Ghanmi (2011)
determined optimal hub location and aircraft routes used in the Canadian Forces.
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Finally, there are studies that apply a combination of covering, median, center or other
metrics such as risk. Eberlan (2004), for example, applied SCLP, p-center and p-median
formulations for optimally allocating strip alert sites (sites where aircraft are kept on a level of
high-readiness) for intercepting potential threats. A two-stage MILP formulation was
leveraged by Brown et al. (2005) to defend against ballistic missiles. Similarly, Bell et al.
(2011) applied SCLP along with p-median formulations to determine optimal locations for
alert sites for homeland defense by selecting aircraft sites to cover critical areas. Çetinkaya and
Haffar (2018) allocated different weapon types based on a risk-based location-allocation
approach. Tanerg€uçl€u et al. (2012) optimally located radar and air defense weapon systems to
cover the approach routes of incoming weapons. Murphy et al. (2010) developed a dynamic
defensive strategy that uses dynamic missile defense to reduce risk, make best use of existing
assets, and keep the cost of developing and acquiring new systems at a minimum. Haywood
et al. (2022a) studied an asset location problem to detect and interdict intruders over paths
using multi-objective optimization. Haywood et al. (2022b) used a bi-level programming
approach for ballistic missile defense asset location.

Surveillance, sensor and warning
Location planning problems are also used for deploying different surveillance or detection
sensors such as sonar and radar. In this context, Schick (1992) applied an MCLP model for
locating imaging radars for identifying space-borne objects in Canada; Kierstead and
DelBalzo (2003) planned search paths in continuous space and time; Gencer et al. (2008) used
MCLP and maximum expected coverage location problem (MEXCLP); and Daskin (1983)
optimally located detectors and alarms to protect the facilities in a military region from
asymmetric threats. Tanerg€uçl€u et al. (2012) optimally located weapon and radar positions,
and Karatas and Akman (2015) optimally located and deployed a configuration of sensors in a
bi-static setting; multiple works (Washburn and Karatas, 2015; Karatas and Craparo, 2015;
Karatas et al., 2016) evaluated the performance of multi-static sonar fields, pattern
optimization and maximized area coverage. Craparo et al. (2017) and Craparo and Karatas
(2018) leveraged the point (critical facility) coverage problem; Jourdan and de Weck (2004)
optimally located wireless sensors in a hostile region for monitoring critical facilities. Karatas
et al. (2016) identified the best locations out of a set of candidate sites on a barrier line to
improve the probability of detecting intruders trying to cross a barrier line; Karatas (2018)
optimally deployed different sensors utilized for a hybrid barrier and point coverage. Chen
et al. (2015),Wang et al. (2016) andGong et al. (2014) optimally placed receivers and bi-static
radar sources to build belt barrier coverage to prevent illegal crossings. Lessin et al. (2018)
improved border security based on the exposure-oriented sensor location problem. Karatas
(2020) optimally located heterogeneous sensor networks assuming a hub-spoke location
topology; Yakıcı and Karatas (2021) modeled a multi-objective optimal location formulation
of a heterogeneous sensor network for improved network performance, with a genetic
algorithm (GA). In a similar stream, Shi andXue (2016) determined the least number ofwatch-
points for maximizing the overall coverage over a large-scale digital area; Li et al. (2015)
optimized the coverage of wireless sensor networks. Dambreville (2006) optimized the
geographic locations and parameters of the sensors to maximize track covering; Han et al.
(2013) optimized the posture of a terminal air defense system. Jia et al. (2007) maximized the
coverage of a wireless sensor network in a given target area; and Brown et al. (2011) optimally
located onshore radar sites and defending vessels.

Algorithms to solve location planning problems
Different solution methods to solve location planning problems can be categorized into: (1)
metaheuristic methods such as GAs (Jourdan and de Weck, 2004; Yakıcı and Karatas, 2021)
and simulated annealing (Bell, 2003); (2) heuristic methods such as greedy algorithms (Chan
et al., 2008), GRASP (Dawson et al., 2007) and decomposition (Murty and Djang, 1999) and
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(3) mathematical programming approaches (Schick, 1992; Amouzegar et al., 2004a, b;
Church, 2004; Eberlan, 2004; Church and Scaparra, 2007; Gencer et al., 2008; Arslan, 2009).
Here we provide a brief overview of these solution approaches and compare their advantages
and limitations. For a detailed list of different solutions used for location planning problems in
the military, see Karatas et al. (2019) and Argun (2019).

Mathematical programming optimization (e.g. exact and exhaustive search),
heuristics and metaheuristics are three different solution techniques used in the
literature to solve location planning problems. Ideally, mathematical programming-
based methods can obtain optimal solutions in small- and medium-size instances of the
location planning problems including SCLP and MCLP. However, they perform poorly
in large-scale instances of these problems because of the computational complexity of
location planning problems. In these situations, the heuristic and metaheuristic methods
can be fast and efficient in identifying solution alternatives. These methods, however, do
not guarantee the global optimality of their solutions. Heuristic methods like greedy
algorithms (Chan et al., 2008) and GRASP (Dawson et al., 2007) are problem-specific while
metaheuristics and metaheuristic approaches (Bell, 2003; Jourdan and de Weck, 2004) are
problem-independent. This allows metaheuristics to solve a wide range of problems.
Metaheuristic techniques include a broad range of methods. At a high level, they are
categorized into either single- or population-based methods. As a comparison, typical single
solutionmetaheuristics rely on a single candidate solution and refine it until certain criteria are
met; examples include variable neighborhood search (VNS), Tabu search (Wang et al., 2014),
iterated local search, guided local search, and simulated annealing (Bell, 2003). On the other
hand, population-based approaches seek to identify multiple candidate solutions and guide the
search based on the characteristics of the population. Particle swarm optimization,
evolutionary computation and GAs (Jourdan and de Weck, 2004) are examples of
population-based metaheuristics. Moreover, hybrid algorithms like a metaheuristic in
combination with other techniques are also employed for solving location planning
problems (Pond et al., 2015; Yakıcı and Karatas, 2021).

Methodology
Problem definition
The underlying idea of the MMCLP is that an organization has a suite of defense facilities of
different types, each ofwhich can have unique characteristics such as detection radius, weather
and visibility limitations, and suitable geographic or zone placement regulations. Moreover, it
is reasonable to assume that suitable points may vary depending on the facility type. In our
application, we assume that the facility types are different only in terms of their detection
radius or effective coverage range. We also assume there should be limited overlap between
the coverage of different facilities, although this may not be a strict requirement in practice.

Parameters
ai : Population density at grid cell i
pb : Maximum number of facilities of type b to be placed
Sb : The coverage range of facility b

Sets
I : Set of demand points (grid cells), indexed by i ∈ I ¼ f1; :::; jIjg
J: Set of candidate locations (grid cells), indexed by j ∈ J ¼ f1; :::; jJjg
B: Set of facility types, indexed by b ∈ B ¼ f1; :::; jBjg
N bi: Set of potential sites (grid cells) within Sb coverage distance of point i
N bj: Set of demand points (grid cells) within Sb coverage distance of point i
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Decision Variables
ybi : ybi ¼ 1 if a grid cell i is covered by a nearby facility of type b and 0 otherwise
xbj : xbj ¼ 1 if a facility of type b is located at candidate location j and 0 otherwise

Both of the above decision variables ybi and xbj are binary decision variables.
Given these definitions, the MMCLP formulation writes as follows:

Max F ¼
X

i∈I

X

b∈B
aiybi (1)

subject to:
X

j∈N bi

xbj ≥ ybi ∀ i ∈ I; b ∈ B (2)

X

j∈J
xbj ≤ pb ∀ b ∈ B (3)

X

b∈B

X

j∈N bi

xbj ≤ 1 ∀ i ∈ I (4)

xbj þ xb’j’ ≤ 1 ∀ j0 < j; j and j0 ∈ J (5)

∀ b; b0 ≠ b ∈ B;N bi \N b’i’ (6)

xbj; ybi ∈ f0; 1g ∀ j ∈ J; i ∈ I; b ∈ B (7)

where I and J are the sets of demand (population) and candidate points for defense system
installation, respectively.Variable ai is theweight or demand for coverage (population density)
at demand point i. Set xbj is the first set of decision variables that take the value of 1 if a facility
of type b is located at candidate point j ∈ J, and 0 otherwise. Set ybi is another set of decision
variables that take the value of 1 if demand at point i ∈ I receives coverage service from (or
covered by) a nearby facility of type b and 0 otherwise. SetN bi¼ fj ∈ Jjdij ≤ Sbg∀ i ∈ I is the
set of potential facility placement sites that fall within the (exogenous) maximum coverage
distance Sb of demand point i, dij is the distance between a demand point iand candidate facility
point j. In the same way, N bj¼ fi ∈ Ijdij ≤ Sbg∀ j ∈ J is the set of demand points that falls
within the maximum coverage distance Sb of candidate facility point j.

The objective functionmaximizes the total demand-weighted population area for coverage.
The constraint set (2) specifies that a demand point is considered covered by facility type b if at
least one facility of that type is located within S units of distance from the demand point. The
constraint set (3) ensures that a maximum number of p facilities of type b should be sited. The
constraint set (4,5) imposes the non-overlapping requirement for the set of facilities to make
sure that atmost one facility among all facility types is located at an eligible site. The constraint
set (6) imposes the non-overlapping requirement for each demand point to make sure that each
demand point is not covered bymore than one nearby facility (of any types). The constraint set
(7) enforces the integrality condition.

Data description and processing
The data for our case study used in this analysis are gathered from different open-source
geospatial and demographic databases fromunclassifiedCanadian sources. The compiled data
provide an approximation, but not an exact representation, of the distribution of population and
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critical infrastructure. Population estimates for each dissemination area are taken from
Statistics Canada (2016a, b). There are millions of people and hundreds of valuable resources
that must be covered. We utilized different open-source geographic and demographic
information for Canadian cities/dissemination areas andmerged and stacked them on different
layers. Figure 1 is a representation of all critical infrastructure and population areas
superimposed on the map of Canada. As we can see, the critical assets are distributed non-
uniformly in continuous space throughout the country. By superimposing a grid over our
continuous geographic area and representing each grid space by a point, we transformed our
continuous data into discrete sets. Different grid size leads to different resolution, requiring
different computation and storage requirements. We approach the problem at different
resolution levels ranging from a low resolution to the highest possible resolution reasonably
permitted by our computational resources. For instance, with a grid size of 25 km, our original
data (in complete format) consists of up to 50,000 grid squares.

Solution
Proposed GA-based solution for the MMCLP
The GA is a bio-inspired population-based optimization method introduced by Holland
(1992). The broad idea of a GA is to generate an initial population of solutions and then
improve population fitness gradually using reproduction mechanisms, such as crossover and
mutation through generations. In this study, we integrate local search and large neighborhood
search strategies to mitigate the probability of premature convergence. The overall workflow
of the GA-based solution of theMMCLP is presented in Figure 2. In what follows, we explain
different steps of the solution algorithm.

Figure 1. Population and critical infrastructure distribution of Canada
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Chromosome encoding and fitness computation
A potential solution for theMMCLP is the set of potential locations of size

P

b∈B
pb chosen out of

the set of all candidate sites. Here a chromosome is a
P

b∈B
pb-tuple integer string

fft1
1; t1

2; :::; t1
p1
g; ft2

1; t2
2; :::; t2

p2
g; :::; ftb

1; tb
2; :::; tb

pb
gg of sub-chromosomes of length pb; b ∈ B,

each representing the indices of candidate sites chosen as the placement sites for facility type b.
A chromosome’s fitness represents the quality of the solution based on the values of the
objective functions of the MMCLP. In other words, the fitness of a chromosome shows the
amount of potential coverage that is achieved by the selected facility sites encoded in that
chromosome.

Selection mechanism
In each iteration (generation) a set of individual solutions (also called parents) are entered into
amating pool and exchange their genetic information to create two offspring solutions. For the
chromosome selection process we use a binary tournament selection process (Goldberg,
2002). In the binary tournament process two chromosomes are selected randomly from the
population pool and put in the mating pool for the crossover operation.

Crossover and mutation operators
We use single-point crossover and bit string mutation operators in our GA-based solution.
Figure 3 depicts the process of a single-point crossover operation and a bit stringmutation. The
crossover andmutation operations are controlled by crossover andmutation rate parameters to
produce the child population with offspring solutions produced by crossover and mutation
operations.

Figure 2. Steps of the proposed GA-based solution
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Local neighborhood search operator
Local neighborhood search is a chromosome refinement process under which a percentage of
chromosomes (solutions) are locally perpetuated. The process of local improvement is such
that one gene of a chromosome that represents a potential site is replaced randomly by one of
its own neighborhood sites that arewithin themaximumcoverage range. This refinement leads
to a small perturbation on the fitness of the chromosome.

Large neighborhood search operator
Unlike the local neighborhood search, the large neighborhood search is a chromosome
refinement process under which one of the chromosome’s genes is replaced randomly by a
candidate site that is not within its neighborhood range. This leads to a larger perturbation on
the chromosome fitness and may help escape local optima.

We note that there is a subtle difference between the mutation and local and large
neighborhood search process such that in themutation process a chromosome changes genetic
information with that of another chromosome in the population. While in the local
neighborhood search, a chromosome exchanges information within itself and in the large
neighborhood search the chromosome changes information on a genetic level but not
necessarily with itself nor with other chromosomes.

Termination criteria
The individualmembers of each population for a particular generation are evaluated based on a
selection strategy (e.g. their fitness values) and then the best solutions are propagated to the
next generation. This procedure is iterated until the termination criteria is met. Here we use the
termination criterion based on the variance of the fitness values within each generation.
Therefore, when the variance of the fitness in a generation falls below a specified threshold the
GA-based solution procedure stops.

Numerical results
In this section, we perform a comprehensive numerical analysis to examine the performance of
the proposed GA-based solution method and different search-space resolutions on the
solution.

Figure 3. Chromosome string representation, and crossover and mutation operations on candidate solutions
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GA-related parameters (e.g. the size of population, the number of generations, themutation
and crossover rates, and the local and large neighborhood search rates) must be carefully
decided to ensure solution convergence along with exploitation and exploration capabilities.
The values of these parameters highly depend on the size of the problem (i.e. eligible facilities
and maximum number of facilities to be open, the number of decision variables and
constraints). Basu et al. (2015) conduct a detailed review of metaheuristic solutions on facility
location problems. Their overview identified two distinct ways by which authors determined
the size of the GA population: constant and varied. They identified cases of constant
population size from 20 to 500. For the varied population size approach, they specified that the
population size should be the maximum of either 75% of the number of grid squares, or 100.
Genetic operators represent the algorithm’s exploitation and exploration capabilities and have
a significant impact on algorithm performance. In the papers studied, they found that the
crossover probability is typically much higher than the mutation probability. Specifically, they
listed the value of these parameters for different location planning problems.
According to Basu et al. (2015), a crossover rate in range (0.4, 0.6] and mutation rate in
range (0.2,1.0] is commonly used byGAs for theMCLP problem and other location problems.
We chose crossover and mutation probabilities as 0.4 and 0.2, which are within the proposed
ranges.

The authors discuss three types of termination criteria: (TC1) maximum number of
generations, (TC2) maximum number of generations without any improvement in the best
solution value, and (TC3) execution time. This study used a newTC that uses TC1 alongwith a
threshold for the variance of the fitness in a generation as a termination criterion. We set the
variance threshold for our termination criteria to be 1 3 10−5, and maximum number of
iterations to be 150 if the GA-based solution does not stop based on the variance criteria.

These parameter values are chosen based on initial experiments that showed them to be
appropriate for any instance of the proposed problem.

Lastly, we selected parameter values for the local and large neighborhood search operators.
These operators balance exploitation and exploration in the search. We set the exploitation to
be twice the exploration rate at a fixed rate of 0.5, and the large neighborhood search rate at
0.25 to adhere to a similar ratio (0.5/.25 5 2) as in the crossover and mutation rates
(0.4/0.2 5 2).

The experiments aim to evaluate the GA-based method with input data based on different
grid size resolutions for Canada (see Figure 1). Eliminating areas with no population or critical
assets helps reduce the complexity of the optimization model and allow it to be solvable with
off-the-shelf solvers. These solutions served as benchmarks in low resolution instances of the
optimization problem.

Results from the CPLEX commercial solver served as a benchmark to examine the
effectiveness of solutions and the efficiency of computation time required for executing the
GA algorithm compared to optimized solutions. We considered two facility types with an
effective coverage range of 100 and 200 km, respectively. We varied the number of available
facilities (p ¼ p100 km ¼ p200 km) of each type from 2 to 10 to see how the total coverage changed
when adding more facilities. In the last part of our comparisons we show an instance of a
solution obtained for amulti-type location problem. Each problem instance is solved 50 times.
All algorithms and optimization processes are coded in Python. The optimizationmodels were
coded using the Pyomo package (Hart et al., 2011) and solved by invoking ILOG
CPLEX 20.1.0.

Figure 4 depicts the solutions obtained for coverage for different problem instances when p
varies from 2 to 10. The percentage of coverage is calculated based on the percentage of
population coverage. As we can see the total coverage from both GA and CPLEX solutions
increases as p increases. Overall, these results support the efficiency of the solutions obtained
by the GA-based method and that the optimality gap decreases and solution consistency
increases as the number of facilities to be built increases.
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In terms of computational effort Figure 5 shows the higher efficiency of the GA-based
solution strategy compared toCPLEX. The experimentswith a grid size of 25 km show that the
GA-based solution strategy is at least eight times faster than CPLEX.

Figure 6 depicts the solutions obtained at a higher resolution grid size of 10 km. At this
resolution CPLEX was not able to handle the optimization problem due to running out of
memory. Our analysis found that the optimization problem at 10 km resolution consists of over
9,900,000 non-zeros and over 28,000 constraints. However, the GA-based solution solved all

Figure 4. Maximum coverage as a function of different values of p for the GA-based solution, grid
size 5 25 km, and 50 runs per instance

Figure 5. CPU time (Sec) as a function of different values of p for solutions from CPLEX and GA-based
methods, grid size 5 25 km, with 50 runs per instance
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the problem instances. The coverage from the GA-based solution is improved and in
agreement with the solutions obtained from a lower resolution when the grid size is 25 km
depicted in Figure 4. Similar to the results from our previous experiments, the results here also
support the consistency of the solutions obtained by the GA-based method.

Figure 7 shows the performance of the GA-based solution strategy in terms of
computational effort with regards to different p. These results confirm that as the problem
size grows, due to increasing p, it takesmore time for theGA-based solution to terminatewith a

Figure 6. Maximum coverage as a function of different values of p for solutions from the GA-based solution
with a grid size of 10 km and 50 runs per instance

Figure 7. CPU time (Sec) as a function of different p for solutions from theGA-basedmethod, using a grid size
of 10 km and 50 runs per instance
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solution. This can be attributed to the combinatorial nature of the problem. Overall, the
experiments with a grid size of 10 km show that the GA-based solution strategy can be an
alternative solution strategy when CPLEX cannot handle the solution due to limited
computational resources.

These results support the effectiveness of the GA-based solution compared to CPLEX in
handling large scale instances of the optimization problem. The experiments with grid size of
25 km shows that GA-based solutions are obtained at least 8 times faster than CPLEX. The
comparison of results for the grid size of 10 km to those with a grid size of 25 km indicates that
problem size and thus the solution time depends on the resolution level (grid size). Solution
time is also dependent on other input parameters, such as number of available resources, that
affect the length of the chromosomes in the GA-based solution. We observed that as the
resolution level increases the GA-based solution strategy is not affected as much as CPLEX.
We also note that in almost all of the test instances the GA stops in less than 150 iterations,
which is the maximum iteration limit. This suggests that the variance-based termination
criteria is an appropriatemeasure for theGA-based solution strategywhile achieving objective
values close enough to the optimal solution in these test instances.

To give an estimate about the sizes of the MMCLP instances solved in this paper, we note
that ReVelle et al. (2008) define problems with 900 nodes (n ¼ 900), and 20 candidate
locations (p ¼ 20) as the large instances of maximal covering location problems. Based on
these values, we can say that our smallest problem instance includes n ¼ 2; 756, and

Figure 8. Best solution identified using the proposed GA-based method using a grid size of 25 km; p100 ¼ 3
and p200 ¼ 3
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p ¼ 2; :::; 20, which is considerably larger than those instances defined in ReVelle et al.
(2008). This can be verified as theMCLPcan be defined as a simplified version of theMMCLP
by setting jBj ¼ 1. Our higher resolution data (10 km grid size) is parameterized by n over
9,000 and p ¼ 2; :::; 20, which can be seen as very large-scale instance problem in comparison
and according to the samples solved in Cordeau et al. (2019).

Finally, Figures 8 and 9 show a comparison of the solution from the GA-based method and
CPLEX for amulti-type facility location problem. In these figures dashed circles represent the
defensive covers. Here, we assume there are two types of facility, one with an effective
coverage range of 100 km and another type with an effective coverage range of 200 km. We
also assumed there are three facilities available of each type, i.e. p100 ¼ 3 and p200 ¼ 3. As we
can see, the solution obtained by the GA (Figure 8) closely matches the solution from CPLEX
(Figure 9). Both of the solutions provide about 90% coverage.

The behavior of the GA-based solution for this instance is illustrated in Figure 10. This
figure shows how the GA-based solution continues to improve the fitness of the best andworst
solutions as well as the mean (average) fitness within the population. This demonstrates
how the variance-based termination criteria works in accordance with fitness convergence
and makes the GA-based solution stop before it reaches the maximum number of
iterations limit.

Figure 9. Best solution identified using CPLEX, a grid size of 25 km; p100 ¼ 3 and p200 ¼ 3
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Conclusions
We studied the problem of optimally locating a suite of defense and deterrence systems over a
vast geographic area. We presented a MMCLP problem and proposed a GA-based solution
with local and large neighborhood solution refinement strategies. Our comprehensive
experiments using realistic data supports the effectiveness and consistency of the GA-based
solution method in providing high quality and fast solutions compared to the CPLEX
commercial solver for small as well asmedium instances of the problem. TheCPLEX solution
time in these instances is heavily dependent on the grid size and other input parameters such as
the number of available resources. Conversely, the computational time of the GA-based
solution is not significantly affected by increasing the resolution level. Our future researchwill
be developing a multi-objective optimization model and examining Pareto-optimal solutions
under two or more objectives with different solution methods. A game-theoretic approach can
be used for the inclusion of uncertainty either in the probability of attack or in the probability of
detection. The economic impact of hostile attacks can also be considered to make the solution
applicable to real-life scenarios.
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