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Abstract
Purpose – The purpose of this paper is to provide an outline of the major contributions in the
literature on the determination of the least distance in data envelopment analysis (DEA). The focus
herein is primarily on methodological developments. Specifically, attention is mainly paid to
modeling aspects, computational features, the satisfaction of properties and duality. Finally, some
promising avenues of future research on this topic are stated.
Design/methodology/approach – DEA is a methodology based on mathematical programming for
the assessment of relative efficiency of a set of decision-making units (DMUs) that use several inputs to
produce several outputs. DEA is classified in the literature as a non-parametric method because it does
not assume a particular functional form for the underlying production function and presents, in this
sense, some outstanding properties: the efficiency of firms may be evaluated independently on the
market prices of the inputs used and outputs produced; it may be easily used with multiple inputs and
outputs; a single score of efficiency for each assessed organization is obtained; this technique ranks
organizations based on relative efficiency; and finally, it yields benchmarking information. DEA models
provide both benchmarking information and efficiency scores for each of the evaluated units when it
is applied to a dataset of observations and variables (inputs and outputs). Without a doubt, this
benchmarking information gives DEA a distinct advantage over other efficiency methodologies, such
as stochastic frontier analysis (SFA). Technical inefficiency is typically measured in DEA as the
distance between the observed unit and a “benchmarking” target on the estimated piece-wise linear
efficient frontier. The choice of this target is critical for assessing the potential performance of each
DMU in the sample, as well as for providing information on how to increase its performance. However,
traditional DEA models yield targets that are determined by the “furthest” efficient projection to the
evaluated DMU. The projected point on the efficient frontier obtained as such may not be a
representative projection for the judged unit, and consequently, some authors in the literature have
suggested determining closest targets instead. The general argument behind this idea is that closer
targets suggest directions of enhancement for the inputs and outputs of the inefficient units that may

© Juan Aparicio. Published in Journal of Centrum Cathedra: The Business and Economics
Research Journal. Published by Emerald Group Publishing Limited. This article is published
under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute,
translate and create derivative works of this article (for both commercial and noncommercial
purposes), subject to full attribution to the original publication and authors. The full terms of this
licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

The author would like to thank Vincent Charles for the invitation to write this survey.
Additionally, this work was supported by the Spanish Ministry for Economy and
Competitiveness [grant number MTM2013-43903-P].

This article is part of a special issue Guest Edited by Rajiv D. Banker and Vincent Charles.

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1851-6599.htm

Data
envelopment

analysis

143

Journal of Centrum Cathedra:
The Business and Economics

Research Journal
Vol. 9 No. 2, 2016

pp. 143-167
Emerald Group Publishing Limited

1851-6599
DOI 10.1108/JCC-09-2016-0014

http://creativecommons.org/licences/by/4.0/legalcode
http://dx.doi.org/10.1108/JCC-09-2016-0014


lead them to the efficiency with less effort. Indeed, authors like Aparicio et al. (2007) have shown, in an
application on airlines, that it is possible to find substantial differences between the targets provided by
applying the criterion used by the traditional DEA models, and those obtained when the criterion of
closeness is utilized for determining projection points on the efficient frontier. The determination of
closest targets is connected to the calculation of the least distance from the evaluated unit to the efficient
frontier of the reference technology. In fact, the former is usually computed through solving
mathematical programming models associated with minimizing some type of distance (e.g. Euclidean).
In this particular respect, the main contribution in the literature is the paper by Briec (1998) on Hölder
distance functions, where formally technical inefficiency to the “weakly” efficient frontier is defined
through mathematical distances.
Findings – All the interesting features of the determination of closest targets from a
benchmarking point of view have generated, in recent times, the increasing interest of researchers
in the calculation of the least distance to evaluate technical inefficiency (Aparicio et al., 2014a). So,
in this paper, we present a general classification of published contributions, mainly from a
methodological perspective, and additionally, we indicate avenues for further research on this
topic. The approaches that we cite in this paper differ in the way that the idea of similarity is made
operative. Similarity is, in this sense, implemented as the closeness between the values of the inputs
and/or outputs of the assessed units and those of the obtained projections on the frontier of the
reference production possibility set. Similarity may be measured through multiple distances and
efficiency measures. In turn, the aim is to globally minimize DEA model slacks to determine the
closest efficient targets. However, as we will show later in the text, minimizing a mathematical
distance in DEA is not an easy task, as it is equivalent to minimizing the distance to the
complement of a polyhedral set, which is not a convex set. This complexity will justify the
existence of different alternatives for solving these types of models.
Originality/value – As we are aware, this is the first survey in this topic.

Keywords Data envelopment analysis, Closest targets, Least distance

Paper type General review

1. Introduction
Data envelopment analysis (DEA) is a mathematical programming, non-parametric
technique commonly used to measure the relative performance of a set of
homogeneous processing units, which use several inputs to produce several outputs.
These operating units are usually called decision-making units (DMUs) in
recognition of their autonomy in setting their input and output levels. In contrast to
usual parametric techniques, as stochastic frontier analysis (SFA), DEA does not
need to suppose a particular functional form for the production function, technical
efficiency may be easily evaluated with multiple inputs and outputs, and it also
produces relevant benchmarking information from a managerial point of view. In
particular, DEA provides both input and output efficient targets, the coordinates of
the projection point on the estimated efficient frontier and peers, the efficient
observed DMUs that serve as benchmarks for each of the assessed units.

From its introduction, DEA has witnessed the definition of many different
technical efficiency measures: radial (equiproportional) and non-radial, oriented and
non-oriented and so on. Overall, all of them are based upon the determination of a
“distance” from the evaluated unit to a target efficient point (projection point) on the
piece-wise linear efficient frontier associated with DEA. The selection of a suitable
projection point is a very important procedure in DEA for evaluating the potential
performance of each assessed unit, as it can provide key benchmarking information
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on how inefficient DMUs could reach the status of efficient. As we will mention in
Section 2, the efficiency measures defined in the first 20 years of life of DEA seek, in
some sense, determining the projection points that are located as far as possible
from the DMU evaluated. In this way, the benchmarking information that is
indirectly generated by these traditional DEA models is related to the identification
of the “furthest” efficient targets in inputs and outputs. This also means that
traditional DEA measures maximize the total technical effort associated with the
evaluated unit to reach the efficient frontier. Instead, it seems more natural to
assume that inefficient firms/organizations (DMUs, in general) apply a principle of
least action (PLA) with the aim of being technically efficient. Otherwise, inefficient
units would need to make an extra effort, decreasing inputs and/or increasing
outputs, to reach the frontier. The application of this “natural” PLA is linked to the
determination of the closest targets on the efficient frontier of the corresponding
DEA production possibility set.

Additionally, the determination of closest targets is connected to the calculation of
the least distance from the evaluated unit to the efficient frontier of the reference
technology. In fact, the former is usually computed through solving mathematical
programming models associated with minimizing some type of distance (e.g.
Euclidean). In this particular respect, the main contribution in the literature is the paper
by Briec (1998) on Hölder distance functions, where formally technical inefficiency to the
“weakly” efficient frontier is defined through mathematical distances.

All the interesting features of the determination of closest targets from a
benchmarking point of view have generated, in recent times, the increasing interest
of researchers in the calculation of the least distance to evaluate technical
inefficiency (Aparicio et al., 2014a). So, in this paper, we present a general
classification of published contributions, mainly from a methodological perspective;
additionally, we indicate avenues for further research on this topic.

The approaches that we cite in this paper differ in the way that the idea of
similarity is made operative. Similarity is, in this sense, implemented as the
closeness between the values of the inputs and/or outputs of the assessed units and
those of the obtained projections on the frontier of the reference production
possibility set. Similarity may be measured through multiple distances and
efficiency measures. In turn, the aim is to globally minimize DEA model slacks to
determine the closest efficient targets. However, as we will show later in the text,
minimizing a mathematical distance in DEA is not an easy task, as it is equivalent
to minimizing the distance to the complement of a polyhedral set, which is not a
convex set. This complexity will justify the existence of different alternatives for
solving these types of models.

The paper unfolds as follows: in the following section, we state the main differences
between the DEA approaches based on furthest targets and those based upon the
determination of closest targets. In Section 3, we show the existing ways of computing
the least distance and review the most important references on this issue. In Section 4,
we discuss which properties the new approach satisfies, focusing our attention
particularly on monotonicity. Section 5 contains the key existing results on how to
measure and decompose economic inefficiency through least distance. Finally, Section 6
draws conclusions.
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2. Furthest versus closest targets
In this section, we first revise both the traditional DEA literature, focusing our attention
on the defined efficiency measures in the first years of life of DEA, and the literature
devoted to the application of the PLA. Additionally, we compare graphically and
numerically both approaches, showing that it is possible to find substantial differences
between the targets provided by applying the criterion used by the traditional DEA
models and those obtained when the criterion of closeness is utilized.

What we call “traditional” DEA models in this survey are, of course, the radial and
the directional distance function models, together with the Russell input and output
measures of technical efficiency and their graph extension; the Russell graph measure of
technical efficiency (Färe et al., 1985), the additive model (Charnes et al., 1985), the
range-adjusted measure (Cooper et al., 1999) and the enhanced Russell graph (Pastor
et al., 1999) or slacks-based measure (SBM; Tone, 2001), to name but a few. All these
measures maximize, in some sense, a weighted sum of input and output slacks or do that
in a second stage, as happens with the radial models. This means that the projection
points yielded by them can be considered as the furthest efficient targets in contrast to
the new philosophy that advocates the determination of the closest ones.

In standard microeconomic theory, firm’s economic behavior is usually characterized
by cost minimization, revenue maximization or profit maximization. The choice of a
firm’s specific approach depends, in part, on what assumptions one is willing to make.
From a purely technical point of view, when market prices are not available or they
make no sense, for example, for non-profit organizations, an alternative behavior is that
associated with the PLA. The PLA, a well-known law in physics, states that nature
always finds the most efficient course of action. The historical origin of this concept can
be traced back at least to Pierre Louis Maupertuis and Leonhard Euler in the eighteenth
century. In our context, the PLA is equivalent to minimizing the total technical effort of
the assessed unit to become technically efficient. Total technical effort reflects a change
in the inputs and outputs required by an inefficient DMU to reach the efficient frontier.
In this way, the application of the PLA always yields the efficient targets associated
with the least technical effort (see Aparicio et al., 2014c).

Regarding the revision of the literature linked to the determination of the application of
the PLA, Charnes et al. (1996) was the first approach where this philosophy could be utilized,
in this case, for assessing sensitivity in efficiency classification in DEA. Additionally, Coelli
(1998) suggested a modification of the well-known second stage for radial models with the
aim of seeking targets as similar as possible to the original assessed unit in an oriented
context. It is also worth mentioning that Walter Briec presents a rich line of research
covering theoretical aspects of this new philosophy. In particular, Briec (1998), Briec and
Lesourd (1999) and Briec and Lemaire (1999) determined the least distance to the weakly
efficient subset of the production possibility set using Hölder norms. Frei and Harker (1999)
and Cooper et al. (2000, pp. 60-61) also suggested resorting to Hölder norms. Specifically, the
Euclidean distance in the case of Frei and Harker (1999) and a weighted ��-distance in the
case of Cooper et al. (2000). Moreover, Cherchye and Van Puyenbroeck (2001) defined
the deviation between mixes in an oriented-space framework as the angle between the input
vector of the evaluated unit and its projection point on the frontier, which corresponds to
maximizing the corresponding cosine to identify the closest targets. Regarding other types
of DEA technical efficiency measures, Gonzalez and Alvarez (2001) maximized the
input-oriented Russell efficiency measure, when the traditional input-oriented Russell
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efficiency measure is really minimized. This means that the Gonzalez and Alvarez approach
allows to determine the closest efficient targets in an oriented setting. Takeda and Nishino
(2001) utilized techniques to evaluate sensitivity in efficiency classification based on Hölder
norms following the aforementioned paper by Charnes et al. (1996). Later, Silva Portela et al.
(2003) established that closeness or similarity may be measured with different distances and
efficiency models in DEA. Consequently, the general aim must be to globally minimize the
input and output slacks regardless of the DEA measure finally utilized. Lozano and Villa
(2005) suggested a method that, step by step, determines a sequence of targets to be achieved
in successive stages, which finally converge to the efficient frontier. More recently, Aparicio
et al. (2007) identified closest targets for a dataset of international airlines, applying a new
version of the SBM, showing that large differences between the targets provided by
applying the criterion used by the traditional DEA models and those obtained when the PLA
is utilized can be found in practice. Liu and Peng (2008) applied an approach based on the
least distance to rank efficient units by means of a common set of weights. Furthermore,
other authors have focused their analysis on the Euclidean distance, such as Baek and Lee
(2009), Suzuki et al. (2010), Amirteimoori and Kordrostami (2010) and Aparicio and Pastor
(2014a). In particular, Suzuki et al. (2010) introduced a new distance friction minimization
method in the context of DEA to generate an appropriate (non-radial) efficiency-improving
projection model, for both input reduction and output increase. Additionally, Fukuyama
et al. (2014b) focused on ratio-form efficiency measures and Jahanshahloo et al. (2013)
introduced the directional closest-target-based measures of efficiency, mixing Hölder norms
and directional distance functions in DEA. Finally, Fukuyama et al. (2016) applied the PLA
on Free Disposal Hull technologies.

One of the key derivatives of an efficiency assessment through the application of
DEA techniques is the identification of targets. However, as we mentioned
beforehand, a flaw of traditional DEA models is that they aim at maximizing input
and output slacks, finding targets and peers that are not the closest to the DMUs
being assessed. Next, we will try to illustrate the main differences between the two
existing philosophies in DEA: one devoted to the determination of furthest targets
and the other based on closest targets.

Let us now introduce some notation. Consider that we have observed n DMUs that
use m inputs to produce s outputs. These are denoted by (Xj, Yj), j � 1, …, n. It is
assumed Xj � (x1j, …, xmj) � 0m, j � 1, …, n and Yj � (y1j, …, ysj) � 0s, j � 1,…, n. The
relative efficiency of each DMU0 in the sample is assessed with reference to the so-called
production possibility set T � �(X,Y) � 0m�s:Y cancbe produced from X�, which can be
empirically constructed in DEA from the n observations by assuming several postulates
(see Banker et al., 1984). If, in particular, variable returns to scale (VRS) is assumed, then
it can be characterized as follows:

T � �(X, Y) � 0m�s : �
j�1

n

�j Xj � X, �
j�1

n

�jYj � Y, �
j�1

n

�j � 1, �j � 0�. (1)

The weakly efficient frontier of T is defined as 	W(T) � �(X,Y) � T: Ŷ � Y, X̂ 


X ⇒ (X̂,Ŷ) � T�. Following Koopmans (1951), to measure technical efficiency in the
Pareto sense, it is necessary to isolate a certain subset of 	W(T). We are referring to
the strongly efficient frontier, defined as follows: 	S(T) � �(X,Y) � T: Ŷ � Y, X̂ �
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X,(X̂,Ŷ) � (X,Y) ⇒ (X̂,Ŷ) � T�, i.e. 	S(T) is the set of all the Pareto–Koopmans
efficient points of T.

Next, we show the same inefficiency measure under two different perspectives:
the traditional approach, based on furthest targets (FT) and the least distance
approach, based upon closest targets (CT). In doing so, we focus our analysis on the
well-known Euclidean distance. Before showing the definition of that measure of
technical inefficiency for the two different philosophies, it is worth mentioning that
it can be done under two additional perspectives. On the one hand, underperforming
may be computed applying the Debreu–Farrell notion of technical inefficiency. In
this case, the weakly efficient frontier would play a key role. On the other hand,
technical inefficiency could be calculated resorting to the notion of Pareto-efficiency
(Koopmans, 1951). In this case, a subset of the weakly efficient frontier, i.e. the
strongly efficient frontier, should be utilized. Seeking simplicity, let us now focus
our attention on the strongly efficient frontier 	S(T). In this way, definition of the
measure based on the determination of the furthest targets would be as follows:

D FT
�2 (X0, Y0) � max ��

i�1

m

(si
�)2 � �

r�1

s

(sr
�)2: (X0 � s �, Y0 � s �) � 	S(T), s � � 0m, s � � 0s�, (2)

while the definition related to the identification of the closest targets would be as follows:

DCT
�2 (X0, Y0) � min ��

i�1

m

(si
�)2 � �

r�1

s

(sr
�)2: (X0 � s �, Y0 � s �) � 	S(T), s � � 0m, s � � 0s�, (3)

Model (2) maximizes the objective function, and therefore, it maximizes the individual
slacks. In this way, the yielded projection (target) point, (X0 � s�*,Y0 � s�*) � (x10 �
s1

�*,…, xm0 � sm
�*, y10 � s1

�*,…, ys0 � ss
�*) , will be in general far from the DMU (X0,Y0)

under evaluation, where * hereinafter denotes optimality.
The objective function used in Model (3) is the same as that utilized by Model (2)

with a striking difference: Model (3) minimizes the objective function, and
consequently, it minimizes the individual slacks, instead of maximizing them as
Model (2) does. Consequently, although the benchmarking of Model (2) provides the
furthest targets of the assessed unit, Model (3) yields the most easily attainable
targets.

Graphically, the differences between the two approaches can be illustrated by
Figure 1. In this example, DMU D is evaluated through the two philosophies: D

FT

�2

(X0,Y0) and D
CT

�2(X0,Y0). In the first case, Model (2) generates unit B as the target,
while for the second case, Model (3) yields the (unobserved) point D* as target.
Clearly, D* is closer than unit B to DMU D. Anyway, it is worth mentioning that one
could also argue that, for certain situations (e.g. skill requirement for employees or
market size of customers), sometimes it may be easier to focus only on input
reduction or output increase (see Aparicio et al., 2016).

These significant differences can also be observed when the weighted additive model
is used under the two philosophies. To evaluate the level of technical inefficiency of
DMU0 with data (X0,Y0) applying the traditional approach, one can solve the following
weighted additive model (Lovell and Pastor, 1995).
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WAFT(X0, Y0, W�, W�) � Max �
i�1

m

wi
�si

� � �
r�1

s

wr
�sr

�

s.t.

�
j�1

n

�jxij � si
� � xio, i � 1, …, m (4.1)

� �
j�1

n

�jyrj � sr
� � �yro, r � 1, …, s (4.2)

�
j�1

n

�j � 1, (4.3)

si
� � 0, i � 1, …, m (4.4)

sr
� � 0, r � 1, …, s (4.5)

�j � 0, j � 1, …, n (4.6)

, (4)

where W � � (w1
�, …, wm

�) � R��
m and W � � (w1

�, …, ws
�) � R��

s are weights
representing the relative importance of unit inputs and unit outputs. Different paths
can be followed in choosing such weights. One possibility selects them based on
data and information. In this way, it is possible to achieve a dimensionless optimal
value in Model (4), in the terminology followed by Lovell and Pastor (1995). Another
possibility is to consider fixed values reflecting considerations not embodied in the
data. In this sense, weights can represent value judgment provided by managers or
policymakers. It is worth mentioning that there is a distinguished list of different
weighted additive models. Among them, we want to highlight the following: the
measure of inefficiency proportions (see Cooper et al., 1999) considering

Figure 1.
Furthest vs closest

targets
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(W �, W �) � (1/X0, 1/Y0), where 1/X0 � (1/x10, …, 1/xm0) and 1/Y0 � (1/y10, …, 1/ys0);
the range adjusted measure of inefficiency (see Cooper et al., 1999) considering
(W �, W �) � (1/(m � s)R �, 1/(m � s)R �) where R � � (R1

�, …, Rm
�) with Ri

� �
max
1�j�n

�xij� � min
1�j�n

�xij�, i � 1, …, m, and R � � (R1
�, …, Rs

�) with Rr
� � max

1�j�n
�yrj� �

min
1�j�n

�yrj�; the bounded adjusted measure of inefficiency (see Cooper et al., 2011)

considering W � � 1/�(m � s)(X0 � X_)�, where X_ � (x_1, …, x_m) with x�i � min
1�j�n

�xij�,
i � 1, …, m, and W � � 1/�(m � s)( Ȳ � Y0)�, where Ȳ � ( ȳ1, …, ȳs) with ȳr �
max
1�j�n

�yrj�, r � 1, …, s; the normalized weighted additive model (see Lovell and
Pastor, 1995) considering (W �,W �) � (1/
 �, 1/
 �) where 
 � � (
1

�, …, 
m
�) is the

vector of sample standard deviations of inputs and 
 � � (
1
�, …, 
s

�) is the vector
of sample standard deviations of outputs.

Additionally, Model (4) “maximizes” the weighted �1 distance from the assessed
DMU0 to the frontier of the production possibility set, thereby increasing outputs and
reducing inputs at the same time.

It is not difficult to define a version of the weighted additive model based on the
determination of the least distance. In particular, let us write that model in a compact
way:

WACT(X0, Y0, W�, W�)

�min � �
i�1

m

wi
�si

� � �
r�1

s

wr
�sr

�: (X0 � s�, Y0 � s�) � 	S(T ), s� � 0m, s� � 0s�.
(5)

Model (5) determines the weighted �1 distance from (X0,Y0) to the set of points belonging
to the strongly efficient frontier that, at the same time, dominates DMU0 in the sense of
Pareto. Later on, we will show that Model (5) is not equivalent to Model (4), substituting
“Max” by “Min” in the objective function.

Regarding other measures in DEA, if we focus on the SBM of Tone (2001), which is a
measure of technical efficiency instead of technical inefficiency, then “Min” and “Max”
must be exchanged in the models. Let us show that.

In the case of considering the traditional SBM, we have the following model (in a
compact format):

�FT
SBM(X0, Y0) � min �1 �

1
m �

i�1

m si
�

xi0

1 �
1
s �

r�1

s sr
�

yr0

: (X0 � s�, Y0 � s�) � 	S(T ), s� � 0m, s� � 0s�.

(6)

Model (6) minimizes the objective function, and then, by the sign of the coefficients of
each slack in the objective function, it maximizes the individual slacks. In this way, the
yielded projection point will be far from the DMU under evaluation.

In contrast, following the PLA, we have an alternative for determining closest targets
through the evaluation of the following model:

JCC
9,2

150



�CT
SBM(X0, Y0) � max �1 �

1
m �

i�1

m si
�

xi0

1 �
1
s �

r�1

s sr
�

yr0

: (X0 � s�, Y0 � s�) � 	S(T), s� � 0m, s� � 0s�.

(7)

Note that, as we pointed out, the objective function used in Model (7) is now
maximized instead of minimized to determine the closest targets on the strongly
efficient frontier. In this way, Model (7) generates the most easily attainable efficient
targets.

A comparison between the results yielded by Models (6) and (7) was carried out in
Aparicio et al. (2007) using a real database. In particular, Aparicio et al. (2007) found
substantial dissimilarities between the targets provided by applying the criterion
used by the traditional DEA models and those obtained when the PLA is considered
for finding projection points on the strongly efficient frontier. In particular, they
applied models (6) and (7) to a dataset on airlines. Specifically, a set of 28
international airlines from North America, Europe and Asia-Australia was
assessed. For each airline, two outputs (passenger-kilometres flown, PASS, and
freight tonne-kilometres flown, CARGO) and four inputs (number of employees,
LAB, FUEL, other kind of inputs excluding labor and fuel expenses, MATL, and
Capital, CAP) were considered. As for the results, Models (6) and (7) detect the same
airlines as Pareto-efficient (9 of 28). This is no accident. Both models will always
identify the same set of efficient DMUs. Moreover, Aparicio et al. (2007) observed
large differences between the optimal values of Models (6) and (7). An example of
that is AUSTRIA airlines ( �FT

SBM(X0,Y0) � 0.290 vs �CT
SBM(X0,Y0) � 0.769). Regarding

the reason, the traditional SBM is maximizing the slacks, which in the application
led to extremely large targets for the output CARGO. Additionally, the improvement
percentages suggested for this output for USAIR was 961 per cent, and for
EASTERN, it was 742 per cent under the traditional approach. Consequently, in this
real example, the traditional SBM suggests such high improvement percentages in
CARGO that they probably cannot be assumed by the assessed airlines. However,
the improvement percentages suggested by the PLA are considerably less exacting:
USAIR (38 per cent) and EASTERN (9 per cent).

In general terms, Aparicio et al. (2007) detected substantial differences between the
targets determined by resorting to a criterion of either minimization or maximization,
which shows that some of the airlines may reach the strongly efficient frontier with less
technical effort than that suggested by the classical approach. Additionally, in the
application, the traditional SBM suggested the need for considerable enhancements in
some variables for units that are actually near the strongly efficient frontier. That is the
case of, for example, CANADIAN. For this airline, the solution associated with Model (7)
showed that this airline would become Pareto-efficient with practically reducing FUEL
by 27 per cent, whereas the targets provided by the traditional SBM, Model (6), requires
this DMU to decrease LAB by 35 per cent and FUEL by 21 per cent and to increase
CARGO by 87 per cent. So, the targets associated with the optimal solution of the

151

Data
envelopment

analysis



traditional SBM are more demanding than those corresponding to the application of the
PLA.

In view of the preceding discussion, one conclusion is that the determination of the
least distance or, what is equivalent, the application of the PLA, can be considered a
suitable benchmarking tool in DEA.

In what follows, we will survey the main results regarding modeling, computational
aspects and the satisfaction of some properties of interest from a mathematical and
economical point of view.

3. Modeling and computational aspects
In contrast to models that determine the furthest targets, there is a stream in DEA
literature that defends just the opposite, i.e. the projected points on the efficient frontier
obtained as such are not a suitable representative projection for the evaluated unit.
However, the implementation of the new philosophy based upon the PLA is not as easy
as replacing “Max” by “Min”, for example, in Model (4). The determination of the least
distance and closest targets is a hard task from a computational point of view. This
difficulty results from the complexity of determining the least distance to the frontier of
a DEA technology from an interior point, as this problem is equivalent to minimizing a
convex function on the complement of a convex set.

To illustrate that we cannot change “Max” by “Min” in Model (4) and get directly
something mathematically equivalent to (5), let us consider Figure 2. In this case,
�D � 1 , �A � �B � �C � 0 , sD

� � sD
� � 0 is a feasible solution of Model (4) when DMU

D is evaluated. However, if we minimize instead of maximize in program Model (4),
then it is also an optimal solution because the objective function is lower-bounded
by zero. But then, the projection point, the target, would be unit D, which is an

Figure 2.
Example of internal
projection
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interior point. Thus, we cannot obtain an equivalent model to Model (5) simply by
replacing “Max” by “Min” in Model (4).

Another usual misspecification of the model is that in which the convex
combinations are restricted to the set of extreme efficient DMUs (Units A, B and C in
Figure 2) instead of the whole sample. However, the same simple example is valid to
prove that again it is not enough to substitute “Max” by “Min” in Model (4). In this
respect, note that DMU D is a convex combination of Units A and C. Therefore, �A �
2/3, �B � 0, �C � 1/3 , sD

� � sD
� � 0 is an optimal solution of Model (4) with “Min” when

DMU D is assessed. So, the projection point is once more DMU D, an interior point of the
production possibility set.

Nowadays, there are principally two paths for obtaining the least distance in the
DEA literature. The first one is based on identifying all the faces of the efficient
frontier of the polyhedral DEA technology in a first stage, determining the least
distance as the minimum of the distances to each of the faces in a multi-stage
process. In this way, this first path is related to a combinatorial non-deterministic
polynomial-time hard (NP-hard) problem and has been followed by Cherchye and
Van Puyenbroeck (2001) and Silva Portela et al. (2003). Regarding its
implementation in practice, there are several possibilities. Each of them is
associated with a way of identifying all the efficient faces of the DEA technology.
Chronologically speaking, Paradi and Pille (1997) proposed an algorithm for
identifying all the faces in DEA to calculate two mathematical norms: �1 and �2. Their
algorithm is based upon choosing all the combinations of extreme efficient DMUs
and calculating the average point for each of them. Then, the (original) additive
model (Charnes et al., 1985) is applied to check whether this “virtual” point is on the
efficient frontier or not. So, the corresponding distances are determined by
projecting each evaluated DMU to each previously identified face, and selecting that
with a minimum value regarding the proposed distance. Silva Portela et al. (2003)
proposed a different procedure to identify all the face-generating supporting
hyperplanes of the considered technology: using the Qhull software (see Barber
et al., 1996). Qhull is a general tool that has been developed to yield the convex hull
of a dataset. In particular, it can be used to identify the supporting hyperplane
equations for the efficient faces in DEA (Olesen and Petersen, 2003). However, we
believe that Qhull is not user-friendly software in the case of DEA because it is not
software designed exclusively for DEA practitioners. As far as we are aware, there
is no software that executes the described multistage procedure in just one step. In
the same vein, a group of researchers have tried to determine the efficient faces of the
production possibility set in DEA through algorithms with different characteristics.
This is the case of Jahanshahloo et al. (2005, 2007 and 2010).

The second path corresponds to the approach proposed by Aparicio et al. (2007),
where the strongly efficient frontier is characterized by linear constraints and binary
variables, which consequently allows the closest targets to be determined without
explicitly calculating all the efficient faces by resorting to mixed integer linear
programming (MILP). Next, we show the main result of Aparicio et al. (2007).
Nevertheless, we first need to introduce the dual linear program of Model (4), as primal
and dual programs associated with the weighted additive model will allow us to explain
the Aparicio et al. result in a better way.

The linear dual of Model (4) can be written as follows:

153

Data
envelopment

analysis



WAFT (X0, Y0, W�, W�) � Min �
i�1

m

vixi0 � �
r�1

s

uryr0 � �

s.t. � �
i�1

m

vixij � �
r�1

s

uryrj � � � 0, j � 1, …, n (8.1)

vi � wi
�, i � 1, …, m (8.2)

ur � wr
�, r � 1, …, s (8.3)

(8)

The following theorem characterizes the strongly efficient points that, additionally,
dominates DMU0 (X0,Y0).

Theorem 1 (Aparicio et al., 2007).
Let S(X0,Y0;T): � 	s(T) � �(X,Y) � R�

m�R�
s : xi � xi0,∀i, yr � yr0,∀r� be the set of

strongly efficient points in T dominating (X0,Y0) in the sense of Pareto. Then,
(X,Y) � S(X0,Y0;T) if and only if ∃�, s�, s�, v, u, �, d, b such that xi � � j�1

n �jxij, ∀i,
yr � � j�1

n �j yrj, ∀r and

�
j�1

n

�jxij � xi0 � si
�, i � 1, …, m (9.1)

�
j�1

n

�jyrj � yr0 � sr
�, r � 1, …, s (9.2)

�
j�1

n

�j � 1, (9.3)

� �
i�1

m

vixij � �
r�1

s

uryrj � � � dj � 0, j � 1, …, n (9.4)

vi � wi
�, i � 1, …, m (9.5)

ur � wr
�, r � 1, …, s (9.6)

si
� � 0, i � 1, …, m (9.7)

sr
� � 0, r � 1, …, s (9.8)

�j � 0, j � 1, …, n (9.9)
dj � Mbj, j � 1, …, n (9.10)
�j � 1 � bj, j � 1, …, n (9.11)
dj � 0, j � 1, …, n (9.12)
bj � �0, 1�, j � 1, …, n (9.13)

(9)

where M is a sufficiently big positive number.
The above mentioned result combines the constraints of Programs (4) and (8) in

Model (9). Indeed, (9.1)-(9.9) coincide with (4.1)-(4.6) and (8.1)-(8.3), whereas (9.10)-(9.13)
are the key to suitably mixing all the aforementioned constraints, resorting to a set of n
binary variables bj.

The points satisfying the constraints in Theorem 1 are those of the technology
dominating the evaluated DMU that may be expressed as a convex combination of units
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lying on the same efficient face of the production possibility set. Also, since vi �
wi

� � 0, i � 1, …, m, and ur � wr
� � 0, r � 1, …, s, we have that the corresponding

convex combinations of these units belong to a Pareto-efficient face of the technology.
Additionally, the importance of the theorem lies in the fact that the set of feasible points
at which the minimum distance to the Pareto-efficient frontier is achieved, can be
represented through a set of “linear” constraints. This allows overcoming the
computational difficulties associated with the non-convexity when dealing with the
problem of minimizing a mathematical distance or maximizing an efficiency measure to
the efficient frontier.

For applying Aparicio et al.’s approach to find the desired least distance, the
practitioner only needs to specify how to measure the similarity between its inputs
and outputs and the targets (a mathematical distance or an efficiency measure), as
these will be determined as the optimal solution of a mathematical programming
problem that minimizes (maximizes) the selected distance (efficiency measure)
subject to the linear constraints that were shown in Theorem 1.

In particular, invoking Theorem 1, it is not difficult to formulate a MILP program
equivalent, in optimal solutions and value, to Model (5), which seeks to determine the
least distance and closest targets:

WACT (X0, Y0, W �, W �) � Min �
i�1

m

wi
�si

� � �
r�1

s

wr
�sr

�

s.t.

�
j�1

n

�jxij � xi0 � si
�, i � 1, …, m

�
j�1

n

�j yrj � yr0 � sr
�, r � 1, …, s

�
j�1

n

�j � 1,

� �
i�1

m

vixij � �
r�1

s

uryrj � � � dj � 0, j � 1, …, n

vi � wi
�, i � 1, …, m

ur � wr
�, r � 1, …, s

si
� � 0, i � 1, …, m

sr
� � 0, r � 1, …, s

�j � 0, j � 1, …, n
dj � Mbj, j � 1, …, n
�j � 1 � bj, j � 1, …, n
dj � 0, j � 1, …, n
bj � �0, 1�, j � 1, …, n

(10)

Model (10) resorts to a big M. This type of resource in Mathematical Programming is
very standard. Indeed, its value in practice is usually determined by the coefficients of
some specific constraint of the model or some additional information, which permit
fixing a particular value for it when the problem has to be implemented through some
optimizer. However, this is not the case for Model (10). In our context, the value of M can
be determined once we have identified all the efficient faces of the DEA technology,
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something that we would like to avoid. Nevertheless, it is not real problem from a
computational point of view because constraints (9.9)-(9-13) are equivalent to �jdj � 0,
�j � 0, dj � 0, j � 1, …, n, which can be implemented by means of a special ordered set
(SOS) (Beale and Tomlin, 1970). SOS is a way to specify that a pair of variables cannot
take strictly positive values at the same time and is a technique related to using special
branching strategies. Traditionally, SOS was used with discrete and integer variables,
but modern optimizers, for example, CPLEX, also use SOS with continuous variables.

Although Aparicio et al.’s result works well for the graph context, where inputs and
outputs are changed at the same time, Aparicio et al. (2016) have recently shown that all
existing approaches to determine the closest Pareto-efficient targets in DEA, even
Aparicio et al. (2007), present some weaknesses when they are applied or adapted to the
“oriented” framework, i.e. when the interest of the firm/organization is to expand its
output bundle without requiring any increase in its inputs or to contract its input bundle
without requiring a reduction in its outputs. In particular, they have proved that
Theorem 1 can still be applied but under restrictive conditions: output (input) oriented,
multiple outputs (inputs), one input (output) and constant returns to scale (CRS). To deal
with the oriented problem in a suitable way, a new methodology based upon bilevel
linear programming was introduced by Aparicio et al. (2016) to determine the desired
targets. Its implementation is particularly rooted in the application of the Karush–
Kuhn–Tucker optimality conditions to the lower-level problem and special ordered sets.

Regarding existing alternatives in the literature for determining the least distance,
we have mentioned the main two. Nevertheless, other authors have introduced specific
procedures to apply the PLA on the strongly efficient frontier. Unfortunately, these
approaches do not perform correctly. On the one hand, Frei and Harker (1999) proposed
an algorithm to obtain all the efficient facets in DEA based upon the optimal shadow
prices identified for each DMU. However, this methodology only partially describes the
real frontier because it does not apply an exhaustive procedure of searching. On the
other hand, in the context of measuring technical efficiency through an input-oriented
model, Gonzalez and Alvarez (2001) suggested minimizing the sum of all the
input-specific contractions to reach the strongly efficient frontier: GAI(X0,Y0) � min
� � i�1

m (1 � �i): (�1x10, …,�mxm0)�	sL(Y0),�i � 1,∀i�, where 	sL(Y0) is the strongly
efficient frontier of the input requirement set. Note that this approach is related to the
determination of closest targets under the Pareto–Koopmans criterion of technical
efficiency because the model prefers values for �i close to one. To implement their new
model, Gonzalez and Alvarez introduced a multistage process based on the solution, in
the first stage, of m linear models, each of them providing the k-th input-specific
contraction. In the second stage, the desired value is obtained as the minimum of all the
input-specific contraction determined previously (see Gonzalez and Alvarez, 2001, P1,
p. 517). Unfortunately, this algorithm does not always lead to the correct solution, as is
shown in Aparicio et al. (2016) by means of a counterexample.

If we focus our attention on the identification of the least distance to the “weakly”
efficient frontier, then we can find two procedures, associated with the �1 and �� metrics,
that correctly lead to the desired results (see Briec, 1998). Regarding the �1 metric, it is
calculated through the resolution of m � s linear programs, many as the number of
variables. Each program coincides with a specific directional distance function
(Chambers et al., 1998) that uses a directional vector with all components equal to zero
except for the dimension (variable) being evaluated. As for the �� metric, it can be
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computed by means of the resolution of a directional distance function that utilizes a
directional vector with all components equal to one.

In view of the preceding discussion, from a computational point of view, the
determination of the least distance in DEA has not yet been satisfactorily solved, and
consequently, the effort to apply new methods to overcome the problem is, therefore,
justified. In this respect, other related papers are those by Martinez-Moreno et al. (2013),
Lopez-Espin et al. (2014), Aparicio et al. (2014b) and Gonzalez et al. (2015), who apply
genetic algorithms, meta-heuristics and parallel programming for determining closest
efficient targets in DEA.

4. Properties of the new approach
Other alternative techniques for measuring efficiency, such as SFA, which is grounded
on statistical tools, may check the goodness of fit of the proposed model by statistical
tests (ANOVA, R2, etc.). In contrast, DEA lacks a goodness of fit tool.

The way of checking the goodness of the measures of efficiency in DEA is
establishing a list of properties that the measure should satisfy a priori. In the context of
efficiency measurement, Färe and Lovell (1978) were the first who proposed a set of
desirable properties that an ideal efficiency measure must meet. Later, Cooper et al.
(1999) and Pastor et al. (1999) stated similar requirements and suggested some others.
Specifically, the main properties are as follows: (P1) the measure should be between zero
and one, with one meaning full-efficiency; (P2) the assessed DMU is Pareto–Koopmans
efficient if and only if the measure takes a value of one; (P3) units invariant; and (P4)
strong monotonicity.

We particularly want to highlight the concept of strong monotonicity in this section
because it is an indispensable property for any technical efficiency measure. Strong
monotonicity relates the notion of efficiency to Pareto optimality. In detail, if DMU A
dominates DMU B, in the Pareto sense, then the measure of technical efficiency
associated to A should be strictly greater than the measure of technical efficiency of B or,
equivalently, the measure of technical inefficiency associated to A should be strictly less
than the measure of technical inefficiency of B. Indeed, two ways to formulate this
property exist: a strong and a weak version. Next, we show their formal definitions.

Definition 1 [strong monotonicity]. Let D: R�
m � R�

s ¡ R� be an inefficiency index. D
satisfies strong monotonicity if D(X,Y) 
 D(X̂,Ŷ) for all (X,Y) and (X̂,Ŷ) feasible vectors
with (X,Y) � (X̂,Ŷ) and (X, � Y) � (X̂, � Ŷ) .

Next, we introduce a relaxed version of Definition 1.
Definition 2 [weak monotonicity]. Let D: R�

m � R�
s ¡ R� be an inefficiency index. D

satisfies weak monotonicity if D(X,Y) � D(X̂,Ŷ) for all (X,Y) and (X̂,Ŷ) feasible vectors
with (X,Y) � (X̂,Ŷ) and (X, � Y) � (X̂, � Ŷ).

From the abovementioned definitions, if D satisfies strong monotonicity, then it is
also weakly monotonic, but the opposite is not true.

To revise the literature devoted to these properties, we first need to introduce some
particular definition.

The Hölder norms �p (p��1,��) are defined over a g-dimensional real normed space as
follows:
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� �p: Z ¡ �Z �p � �� �
j�1

g

�zj�p	1/p

if p � �1, �]

max
j�1,…, g

��zj�� if p � �

, (11)

where Z � (z1, …, zg) � Rg. From Model (11), Briec (1998) define the Hölder distance
function for DMU0 with vector of inputs and outputs (X0,Y0) as follows:

D	w
p

(T)(X0, Y0) � inf
u,v

��(X0, Y0) � (U, V)�p: (U, V) � 	w(T)� (12)

We will call “weak” Hölder distance function to D	 w(T )
p (X0,Y0) to distinguish this notion

from one where 	w(T) is substituted by 	s(T) in Model (12). Accordingly, it is possible to
define strong Hölder distance functions as D	s(T )

p (X0,Y0) � inf
u,v

��(X0,Y0) � (U,V)�p:
(U,V) � 	s(T)�[1].

Now, we are ready to revise the first results on monotonicity. In particular, Briec
(1998, Proposition 1(3)) proved the following “natural” statement: weak Hölder distance
functions meet weak monotonicity. At the same time, it is not hard to show that weak
Hölder distance functions do not satisfy Definition 1. Accordingly, an interesting
question is this: are strong Hölder distance functions strongly monotonic? In this
respect, Baek and Lee (2009) were the first to attempt to deal with this problem. They
defined an inefficiency measure based on the Euclidean distance and tried to show that
this measure satisfied strong monotonicity. These authors thought that they had
succeeded in proving the property. Unfortunately, strong monotonicity is not satisfied
by Baek and Lee’s approach, as Pastor and Aparicio (2010) showed by means of a
numerical counterexample. Their counterexample also shows that the measure is not
even weakly monotonic. Nevertheless, to state a counterexample of this type, it is
necessary to deviate from the simple situation of a single input and a single output (at
least we need three dimensions), as in this case, strong monotonicity is satisfied by the
strong Hölder distance functions, as we prove next.

P1. If m�s�1, then the strong Hölder distance functions satisfy strong
monotonicity.

Proof. Let (X0,Y0) � (X1,Y1) and (Xo, � Yo) � (X1, � Y1). For 1 � p 
 �. If (X0,Y0) � 	s(T),
then D	s(T )

p (X0,Y0) � 0. Therefore, (X1,Y1) � 	s(T), which implies that D	s(T )
p (X1,Y1) � 0.

So, D	s(T )
p (X0,Y0) 
 D	s(T )

p (X1,Y1). Consequently, let us assume that (X0,Y0) � 	s(T).

Suppose that D	s(T )
p (X0,Y0) � D	s(T )

p (X1,Y1). We know that ∃(X̃0,Ỹ0) � 	s(T) such

that �(X0,Y0) � (X̃0,Ỹ0)�p � D	s(T )
p (X0,Y0) and ∃(X̃1,Ỹ1) � 	s(T) such that

�(X1,Y1) � (X̃1,Ỹ1)�p � D	s(T )
p (X1,Y1). We have three possibilities.

(1) (X̃1, � Ỹ1) � (X0, � Y0). Thus,
D	s(T )

p (X0,Y0)��(X0,Y0)�(X̃1,Ỹ1)�p�(�x10�x̃11�p��y10�ỹ11�p)1/p


(�x11�x̃11�p��y11�ỹ11�p)1/p�D	s(T )
p (X1,Y1),

which it is a contradiction with our supposition.
(2) If x10 
 x̃11, we have that ∃(X0, Ȳ) � 	s(T) with Ȳ � sup � Ȳ: (X0,Y) � T� under

VRS and CRS in two dimensions. Then,
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�(X0, Y0) � (X0, Ȳ)�p � D	s(T)
p (X0, Y0) � D	s(T)

p (X1, Y1) � �(X1, Y1) � (X̃1, Ỹ1)�p

This implies a) �x10 � x10�p � 0 � �x11 � x̃11�p or b) �y10 � ȳ�p � �y11 � ỹ11�p.
• Then, x11 � x̃11 and D	s(T )

p (X1,Y1) � ỹ11 � y11. However, �(X0,Y0) �

(X0, Ȳ)�p � ȳ � y10 and ȳ � y10 � ỹ11 � y11. So, ȳ � ỹ11 � y10 � y11 � 0. Therefore,
ȳ � ỹ11 and (X0, Ȳ ) dominates (X̃1,Ỹ1), which is Pareto-efficient. This is the
contradiction that we were seeking.

• If �y10 � ȳ�p � �y11 � ỹ11�p then �y10 � ȳ� � �y11 � ỹ11�, which is equivalent to
ȳ � y10 � ỹ11 � y11. In this way, we achieve the same contradiction than in option a).

(3) If y10 � ỹ11, we have that ∃( X̄,Y0) � 	s(T) with X̄ � inf �X: (X,Y0) � T� under
VRS and CRS in two dimensions. In this case, we may carry out the same steps
as in ii) and find a contradiction.

For p � �, it is possible to adapt the above procedure and achieve the same result.
Following the line of research of Baek and Lee (2009) and Pastor and Aparicio (2010),

Ando et al. (2012) showed that, in general, strong Hölder distance functions do not meet
strong monotonicity and suggested a solution for satisfying at least weak monotonicity.
Their approach was based on modifying the usual definition of efficiency measure in
DEA by not allowing the final projection point on the frontier to dominate the evaluated
unit (X0,Y0). Their model is as follows:

f	 s(T )
p (X0, Y0) �

min ��(X̂, Ŷ) � (X=, Y=)�p: (X=, Y=) � 	s(T), (X̂, Ŷ) � T(X0, Y0)� (13)

where T(X0,Y0) � �(X0 � Dx,Y0 � Dy): Dx � 0, Dy � 0� .
Note that D	 s(T )

p (X0,Y0) � f	 s(T )
p (X0,Y0) and the final projection point, (X=,Y=), is

determined by minimizing the distance from (X̂,Ŷ), a “virtual” point that is dominated
by (X0,Y0) , to the strongly efficient frontier 	s(T).

Later, Fukuyama et al. (2014a) proved strong monotonicity of strong Hölder
distance functions resorting to an adaptation of Ando et al.’s methodology.

In contrast to Ando et al. (2012) and Fukuyama et al. (2014a), where the usual
definition of the Hölder distance functions is modified, Aparicio and Pastor (2013)
and Aparicio and Pastor (2014b) have suggested an alternative possibility, based on
the extension of the facets of the production possibility set. In particular, Aparicio
and Pastor (2013) proved that the output-oriented version of the Russell measure
(Färe et al., 1985) is a well-defined efficiency measure, satisfying strong
monotonicity on the strongly efficient frontier, if efficiency is evaluated with respect
to an extended facet production possibility set based on full dimensional efficient
facets (FDEF) instead of standard DEA technology. Figures 3 and 4 illustrate the
idea behind this method graphically. In Figure 3, two FDEFs appear, AB and BC,
which are “extended” in Figure 4 to generate a new production possibility set that
contains the original one. Additionally, Aparicio and Pastor (2014b) showed that the
monotonicity property fails because this problem is related to the fact that, in
general, not all the facets of the production possibility set are FDEFs. In other words, this
drawback is associated with the dimensionality of the strongly efficient frontier. It is worth
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mentioning that these methods, which are founded on the extensions of facets, assume that
there is at least one FDEF. However, it is not always true and depends on the geometrical
configuration of the observed data.

As a conclusion of this section, let us highlight the main difference between the
approaches proposed by Ando et al. (2012) and Fukuyama et al. (2014a) and those suggested

Figure 3.
Example of FDEFs

Figure 4.
Extension of FDEFs
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by Aparicio and Pastor (2013 and 2014b). The first ones use the standard DEA production
possibility set but need to modify the traditional definition of efficiency. In contrast, Aparicio
and Pastor (2013 and 2014b) resort to the traditional definition of efficiency but need to
change the standard DEA technology by extending efficient facets.

5. Duality
In view of the content of the preceding sections, it seems that the problem of deriving the
least distance is one of the relevant issues in recent DEA literature. However, one of the
challenges related to this issue that has not yet been fully solved is the extension of this
approach to other different frameworks as, for instance, the decomposition of overall
inefficiency into technical and allocative inefficiencies. In for-profit organizations the
measurement of overall inefficiency in the context of performance evaluation, in
addition to the estimation of technical inefficiency, is generally the most important
objective. A firm is usually interested in changing input and output quantities if this
leads to real economic gains. In this sense, overall inefficiency measures how close the
firm is to the optimal behavior given input and output market prices, while technical
inefficiency measures how close the firm is to the frontier of the technology, being the
second a traditional component of the first one (see Farrell, 1957). In this way, the firm’s
overall inefficiency has usually been decomposed into technical and allocative (price)
inefficiency in the literature.

In DEA, it is well-known that no measure satisfies all desirable properties for
measuring technical efficiency (Russell and Schworm, 2009). In this way, practitioners
must choose between several “imperfect” options to evaluate technical efficiency. This is
true if the focus is placed on treating the technical efficiency measures as being completely
independent from prices and concepts of economic efficiency. However, Russell (1985) shows
that if the existence of a dual relationship with the profit, cost or revenue functions is required
as an axiom, then Shephard’s distance functions are the adequate selection between all the
alternatives because they are the natural dual to the usual measures of economic efficiency,
allowing decomposition of the economic efficiency index. Consequently, the existence of a
relationship between the technical efficiency measure and a measure of economic efficiency
can be considered as an additional property to be satisfied, thereby linking this section with
the previous one in this paper.

Throughout this section, let us assume that DMUs face exogenously determined
market input and output prices and that the aim of each unit is to choose the input and
output combinations that result in the maximum profit.

In this way, let us denote the value of the profit function hereafter as �(C, Q) given
input and output price vectors C � (c1, …, cm) � R��

m and Q � (q1, …, qs) � R��
s .

�(C, Q) � max
x,y � �

r�1

s

qryr � �
i�1

m

cixi: (X, Y) � T�. (14)

The usual profit inefficiency measures that can be found in the literature compares the
observed profit for DMU0 with vector of inputs and outputs (X0,Y0), �0: �
� r�1

s qryr0 � � i�1
m cixi0, with the maximum level of profit �(C, Q). There are two different

ways to evaluate this economic inefficiency. On the one hand, we could use a ratio-form
measure as �0/�(C, Q). However, this expression is only well-defined for �(C, Q) � 0 ,
a scenario that cannot always be guaranteed in practice. On the other hand, the economic

161

Data
envelopment

analysis



loss could be determined by means of the use of a difference measure as �(C, Q) � �0.
This measure takes always non-negative values and a value of zero is related to nil
economic inefficiency. Regarding this difference measure, Nerlove (1965) was the first to
suggest the difference between optimal and actual profit as a measure of overall
inefficiency. Unfortunately, as Nerlove (1965, p. 94) pointed out, this alternative has one
notable drawback. In particular, it is not a suitable economic measure because it is
homogeneous of degree one in prices. One solution to this problem was proposed by
Chambers et al. (1998) for the directional distance function approach, using a particular
deflator: the value of a reference bundle of inputs and outputs.

We now turn to the approaches that have related the notions of least distance and the
profit function. As far as we are aware, there is only one paper in the literature that has
considered this problem: Briec and Lesourd (1999). These authors resort to Hölder
norms for measuring technical inefficiency but using the weakly efficient frontier as a
reference set instead of the strongly efficient. We are referring, therefore, to the “weak”
Hölder distance functions.

After introducing some notation and definitions, we are ready to show how we can
derive a difference measure of profit inefficiency from a duality result proven in Briec
and Lesourd (1999).

P2. (Briec and lesourd, 1999) Let (X0,Y0) be an input-output vector in T. Let �t be the
dual space of �p with 1/p � 1/t � 1. Then,

D	 w(T )
p (X0, Y0) � inf

D,H�0��(D, H) � � �
r�1

s

hryr0 � �
i�1

m

dixi0	: �(D, H)�t � 1�
Proof. See Proposition 3.2 in Briec and lesourd (1999).

By P2, it is obvious that if the input-output market prices, (C, Q), are such that
�(C, Q)� � 1, then �(C, Q) � ( � r�1

s qryr0 � � i�1
m cixi0) � �(C, Q) � �0 � D	 w(T )

p (X0,Y0) for
DMU0. In this way, we would get the usual difference measure of profit inefficiency on
the left hand side of the inequality and the weak Hölder distance function on the right
hand side, showing that it is possible to decompose overall inefficiency through D	 w(T )

p

(X0,Y0). However, as Nerlove (1965) pointed out, the term �(C, Q) � �0 should be
deflated to obtain an appropriate measure of profit inefficiency. Accordingly, we
propose the following solution.

Let (C, Q) � R��
m�s. Then, (C =, Q =): � (C =, Q =)/�(C =, Q =)�t � R��

m�s and satisfies
�(C =,Q =)/�(C =,Q =)�t�t � 1. In this way, (C =, Q =) is a feasible solution of the program that
appears in P2. Consequently, �(C=, Q=) � ( � r�1

s q=ryr0 � � i�1
m c=ixi0) � D	 w(T )

p (x0,y0). In
this way, we finally have that �(C, Q) � ( � r�1

s qryr0 � � i�1
m cixi0)/�(C, Q)�t � D	 w(T )

p

(X0, Y0) because the profit function is homogeneous of degree �1 in prices.
So, the term �(C, Q) � ( � r�1

s qryr0 � � i�1
m cixi0)/�(C, Q)�t may be considered a

(deflated) measure of profit inefficiency, whereas D	 w(T )
p (X0,Y0) would be its technical

inefficiency component and �(C, Q) � ( � r�1
s qryr0 � � i�1

m cixi0)/�(C, Q)�t � D	 w(T )
p

(X0, Y0) , the residual term, would be the allocative or price inefficiency component,
following Farrell’s tradition.

6. Conclusions and further research
The determination of least distance and closest targets have attracted significant
attention over the past few years in the literature on efficiency measurement. A
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growing list of contributions has appeared especially focused on methodological
aspects of this issue. Considerable attention has been paid to how to calculate the
least distance, to both the weakly and strongly efficient frontier, and the satisfaction
of the property of monotonicity. In this paper, we reviewed the state of the research
and classified the different contributions.

To finish the paper, we state some promising avenues of future research on this
methodology.

• From a computational point of view, the determination of the least distance has
still not been satisfactorily resolved, and consequently, the application of new
methods to solve the problem is justified. It particularly seems necessary to apply
methodologies that avoid determining all the efficient faces of the production
possibility set. In this respect, a paper comparing the execution times of existing
approaches would also be of interest.

• Current methodologies lack real applications demonstrating their capability, mainly
from a benchmarking perspective. Most contributions are methodological. Papers
showing the goodness-of-fit techniques with real databases are clearly needed.

• Regarding the satisfaction of the property of monotonicity, some questions still
remain open. For example, what happens with respect to other technical efficiency
measures, like the SBM, when versions based upon the PLA are defined? Is there a
“mathematical” distance (different from the Hölder metrics) that satisfies strong
monotonicity on the strongly efficient frontier? In the same line, is there a new
technical efficiency measure in standard DEA that satisfies strong monotonicity on
the strongly efficient frontier?

• P2, which allows an inequality for �p between profit inefficiency and technical
inefficiency to be established, is true under the assumption of measuring inefficiency
with respect to the weakly efficient frontier. The natural question is: Is this result true
in the case of substituting the weakly efficient frontier by the strongly efficient
frontier? Research needs to be directed at developing new measures of overall
inefficiency capable of dealing with the notion of Pareto-efficiency and the
determination of least distance when technical inefficiency is evaluated.

• Finally, the techniques based on the PLA should be extended to other areas in
efficiency measurement, for instance, the determination of productivity change over
time and its decomposition into its different sources.

Note
1. Another interesting difference between D	 w(T )

p (X0,Y0) and D	 s(T )
p (X0,Y0) is that D	 w(T )

p (X0,Y0)
always yields a projection that dominates (X0,Y0) (see Briec, 1998, Lemma 1(2)), while this is
not the case for D	 s(T )

p (X0,Y0) .
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