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Abstract
Purpose – The purpose of this paper is to improve the estimation of the production frontier in cases
where outliers exist. We focus on the case when outliers appear above the true frontier due to
measurement error.
Design/methodology/approach – The authors use stochastic data envelopment analysis (SDEA) to
allow observed points above the frontier. They supplement SDEA with assumptions on the efficiency
and show that the true frontier in the presence of outliers can be derived.
Findings – This paper finds that the authors’ maximum likelihood approach outperforms super-efficiency
measures. Using simulations, this paper shows that SDEA is a useful model for outlier detection.
Originality/value – The model developed in this paper is original; the authors add distributional
assumptions to derive the optimal quantile with SDEA to remove outliers. The authors believe that the
value of the paper will lead to many citations because real-world data are often subject to outliers.
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1. Introduction
Measurement of productive performance requires estimation of frontier production to serve
as a benchmark for observed production. Frontier production is defined as the maximum
output that can be produced with a given level of resources. Comparing the frontier
production to the observed production provides a measure of decision-making unit (DMU)
efficiency; inefficient units could increase output without an increase in inputs. There are
many different approaches that have been used to estimate frontier production. A common

© Taylor Boyd, Grace Docken and John Ruggiero. Published in Journal of Centrum Cathedra: The
Business and Economics Research Journal. Published by Emerald Group Publishing Limited. This
article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may
reproduce, distribute, translate and create derivative works of this article (for both commercial &
non-commercial purposes), subject to full attribution to the original publication and authors. The
full terms of this licence may be seen at http://creativecommons.org/licenses/by/4.0/legalcode

This article is part of a special issue Guest Edited by Rajiv D. Banker and Vincent Charles.

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/1851-6599.htm

JCC
9,2

168

Journal of Centrum Cathedra:
The Business and Economics
Research Journal
Vol. 9 No. 2, 2016
pp. 168-183
Emerald Group Publishing Limited
1851-6599
DOI 10.1108/JCC-09-2016-0010

http://creativecommons.org/licenses/by/4.0/legalcode
http://dx.doi.org/10.1108/JCC-09-2016-0010


approach in the one-output setting is to assume a functional form of production consistent
with beliefs of the underlying production process. If all deviations from the frontier (function)
are due to statistical noise generated from a symmetric distribution centered at zero, then
ordinary least squares (OLS) would be an appropriate technique subject to the usual
econometric problems (e.g. simultaneity resulting from observed inputs being correlated
with the unobserved inefficiency term). Alternatively, one could estimate this production
function using nonparametric regression[1]. Collier et al. (2016) estimate a sports production
function using alternative parametric and nonparametric estimation approaches. The
nonparametric regressions remove the requirement of specification of the functional form
but come at a cost of slower convergence.

If, however, the data-generating process is characterized instead by a one-sided error
term that reflects only inefficiency, one could use OLS and adjust the intercept by the
largest residual. This approach was suggested by Winsten (1957) and Richmond (1974).
As discussed by Aigner et al. (1977) and proven by Greene (1980), the approach works
because the estimated slope parameters are consistent and unbiased. Shifting the
intercept leads to a consistent estimate of the intercept. Of course, the regression-based
approach is parametric and is subject to model misspecification and biases if the true
functional form of production is not correctly chosen. Additionally, the approach
typically allows only one dependent variable, and hence, studies use an aggregate
output (leading to potential biases), or requires additional information on prices to
estimate the associated cost function[2].

Alternatively, one could use data envelopment analysis (DEA) developed by Charnes et
al. (1978) and Banker et al. (1984). This deterministic model measures frontier production
nonparametrically assuming general axioms of production. One major advantage of DEA is
the ability to simultaneously allow multiple inputs and multiple outputs; efficiency is
typically measured using a Farrell (1957) measure of equiproportional reduction of inputs (or
expansion of outputs) to evaluate observed production relative to frontier production. The
Charnes, Cooper and Rhodes model assumed constant returns to scale, leading to efficiency
estimates that combine technical and scale efficiency. The Banker, Charnes and Cooper
(BCC) model allows convexity and, hence, variable returns to scale.

Initially, DEA was criticized by econometricians who objected to the assumption that
all deviations from the frontier were due to inefficiency. Instead, if data were perturbed
not only by inefficiency but also by statistical noise, the estimated frontier would be
biased upward and estimates of inefficiency would be composed not only of true
inefficiency but also measurement error and other statistical noise. Of course, this
problem exists not only with DEA but also with regression-based approaches that
assume that deviations from the frontier are only one-sided and due to inefficiency.

The stochastic frontier model, developed by Aigner et al. (1977), extends OLS by
allowing a composed error consisting of measurement error and noise. Assuming a
production function, the parametric model requires additional assumptions on
distributions for statistical noise and inefficiency[3]. Typically, noise is modeled with a
normal distribution and the inefficiency is typically assumed to be either half-normal or
exponential. Importantly, the initial models allowed only one output and a priori
specification of the production function and error components. Assuming correct
selection, the model provides unbiased and consistent estimates of all parameters
including the intercept. It has been shown by Greene (1980) that the frontier can be
obtained by using OLS and adjusting the intercept based on moments of the
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distribution. The amount of shift depends on the skewness of the OLS residuals. In a
cross-sectional setting, while the model does a good job identifying the production
frontier, attempts to measure efficiency have failed. Jondrow et al. (1982) provided the
first measure of firm-specific inefficiency by estimating the expected value of
inefficiency given the observed composed error. Ondrich and Ruggiero (2001) prove that
the resulting efficiency measure is simply a rescaling of the observed error. Importantly,
the rank of efficiency using this estimator is unchanged from the ranking of the error.
Furthermore, like DEA, the performance declines as the variance of the measurement
error increases, ceteris paribus.

An alternative to DEA, stochastic data envelopment analysis (SDEA) represents an
attempt to estimate DEA under the assumptions of the stochastic frontier model. Such a
model would prove useful by relaxing the a priori selection of a production function[4].
Banker (1988) and Banker and Maindiratta (1992) provided alternative DEA formulations to
estimate a DEA-type frontier through the middle of the data in the context of the stochastic
frontier model. One of the models contained in Banker and Maindiratta (1992) assumes a
composed error term (e.g. a normal distribution for statistical noise and a half-normal
distribution for inefficiency like the stochastic frontier approach.) Instead of solving a linear
program for each observation (like DEA), the model formulates one DEA-type model with
constraints that satisfy convexity and monotonicity for the predicted output, leading to a
piecewise linear production frontier. The conversion to one model is important because the
distance to the frontier could be influenced by the error of all other DMUs. The objective
function is the likelihood that the data came from the assumed distribution. Conceptually, the
model works well but is limited by the number of observations because the number of
constraints is roughly the sample size squared. Nonetheless, with modern computing, the
model can handle typical-sized problems.

The Banker and Maindiratta (1992) model provides a maximum likelihood estimator
using the Afriat conditions[5] to maintain the axioms of DEA. These important models have
been recently revived with the names convex nonparametric least squares (CNLS) and
stochastic nonparametric envelopment of data (StoNED) (Kuosmanen, 2008; Kuosmanen
and Johnson, 2010 and Kuosmanen and Kortelainen, 2012). In the case of CNLS, the objective
is to minimize the sum of squared residuals like OLS using the Afriat conditions. Of course,
if the true error is a normal distribution with mean zero, the resulting CNLS model reduces to
the Banker and Maindiratta (1992) maximum likelihood estimator, assuming the likelihood
function of the error terms is normally distributed. Banker (1988) provided a nonparametric
quantile regression that seeks to minimize the sum of absolute errors subject to the Afriat
conditions, leading to a piecewise production function estimator that allowed observed
points to appear above the frontier. If the error distribution is LaPlace (double exponential)
centered at zero, then the median quantile using Banker’s model would be maximum
likelihood. The StoNED model combines the known intercept shift together with the Banker
and Maindiratta (1992) model under an assumption of normally distributed errors.

Banker (1988) provides the foundation for an SDEA model where the user
pre-specifies the quantile but does not provide a way to choose the optimal quantile. In
practice, it is not known what the optimal quantile is. Banker et al. (2013) analyzed the
sensitivity of the SDEA model in cases where inputs and/or outputs are perturbed. In
particular, sufficient and necessary conditions are provided where perturbed data do not
change the efficiency scores in the SDEA model. In this paper, we add an additional
assumption on the distribution of the error term but allow observed infeasible outliers
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drawn from different distributions. For example, if we make the common assumption
that the true distribution of inefficiency is half-normal, we are able to choose the
appropriate quantile based on maximum likelihood criteria. As a result, Banker’s SDEA
model can be used to detect and remove outliers.

Banker and Gifford (1988) and Andersen and Petersen (1993) developed a DEA model to
remove overly influential points in the construction of the production frontier. The
super-efficiency model was recommended by Banker and Gifford (1988) and later by Wilson
(1995) as a useful approach for handling outliers to provide a better approximation of the
production frontier. Banker and Chang (2006) provided an analysis using simulated data to
show that the super-efficiency can improve efficiency estimation in the case where there are
a few observations contaminated with noise[6]. While the approach can help identify
influential outliers, the decision on how many units to exclude is arbitrary. And as the
number of outliers increases, the effectiveness of the approach diminishes because the
probability of having outliers in the same neighborhood increases.

The purpose of our paper is to develop an alternative DEA model to detect outliers. We
begin with Banker’s SDEA model and estimate numerous quantiles. We then assume a
distribution for inefficiency and choose the quantile from the SDEA model consistent with
the assumed distribution of inefficiency. In particular, we seek the quantile where the
resulting errors maximize the likelihood that the points below the frontier come from the
assumed distribution. This method will prove useful for empirical analyses where infeasible
outliers appear above the frontier from a different distribution than the inefficiency.

The rest of the paper is organized as follows. In Section 2, we present the empirical
production possibility set and show the estimated frontier using DEA. We also show the
bias introduced in the frontier in the presence of outliers. In Section 3, we present
Banker’s SDEA model and discuss the distribution and likelihood function for the
inefficiency component. We then provide a useful algorithm to estimate the frontier and
inefficiency in the presence of outliers. Section 4 provides simulation analyses based on
differing assumptions of error variances, per cent of outliers and sample size. Section 5
concludes with directions for future research.

2. Data envelopment analysis and outliers
We begin by defining the production possibility set assuming that there are no outliers.
Assume that each of N DMUs produces one output y using a vector of M inputs
x � (x1,…, xM). Output and input levels for DMU i are given by yi and x1i,…, xMi, respectively.
The technology can be represented by the following empirical production possibility set:

T � {(x, y)� �
i�1

N

�i yi � y,

�
i�1

N

�i xji � xj, for j � 1, …, M,

�
i�1

N

�i � 1

�i � 0, for i � 1, …, N}.

(1)
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This is the standard production possibility set used in DEA consistent with the variable
returns to scale the model of Banker et al. (1984).

Figure 1 illustrates the production frontier assuming one input and one output.
Input data x1 were generated U(1,10) with efficient production given by y * � 2x1

0.4. To
obtain observed output allowing inefficiency, we generated ln u � �N(0,0.2)�;
observed output was calculated by multiplying efficient production by the
efficiency index e �ln u. The BCC variable returns to scale the DEA model to
measure output-oriented efficiency for DMU i is given by the following linear
program:

Max �i

s.t.

�
j�1

N

�j yj � �i yi,

�
j�1

N

�j xmj � xmi, for m � 1, …, M,

�
j�1

N

�j � 1,

�j � 0, for j � 1, …, N.

(2)

The solution of linear program (Model 2) for each DMU provides a measure of output
expansion possible given the technology in Model (1). Returning to our previous
example, we solve the DEA model for each DMU and estimate the frontier production.
The resulting frontier, shown in Figure 2, is a piecewise linear approximation to the true
function that generated the data. The true frontier and the estimated DEA frontier are
superimposed in Figure 2; with 100 observations, the nonparametric DEA estimator
does a good job in identifying the true frontier. We note that the estimated frontier is
biased downward due to sample size.

Using the same data, we generate outliers that are above the frontier. In
particular, we invert the error term (in multiplicative form) for the first 10 points.
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Figure 1.
Illustrative data
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These data are illustrated in Figure 3. We note that two of the points are close to the
frontier, but there are now several relatively large positive residuals. The effect on
the estimated DEA frontier become obvious; outliers caused by positive errors lead
to a biased frontier. Given that the frontier is biased upward, the associated DEA
estimates of technical efficiency will be biased downward. DMUs will appear to be
more inefficient than they truly are. We also note that the outliers will cause a
distortion in the relative ranking of efficiency. In this specific example, DMUs with
low input levels are not severely impacted by the presence of the outliers.
However, as input levels increase, inefficiency becomes increasingly biased
downward.

One way of detecting outliers is to measure super-efficiency, a procedure
developed by Banker and Gifford (1988) to remove overly influential outliers.
Andersen and Petersen (1993) applied the approach to rank efficient units. Wilson
(1995) provided an alternative way to use the super-efficiency model to detect and
remove outliers. The super-efficiency measure for DMU i is obtained with a
modification to Model (2) by not allowing a given unit to serve in the benchmark for
itself:
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Figure 3.
Data with outliers
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Max 	i

s.t.

�
j�1

N

�j yj � 	i yi,

�
j�1

N

�j xmj � xmi, for m � 1, …, M,

�
j�1

N

�j � 1,

�i � 0,
�j � 0, for j � 1, …, N.

(3)

If �i
* � 1 from Model (2) and 	i

* 
 1 from Model (3), DMU i was identified as efficient
because there were no other feasible convex combinations other than itself. Comparing
Models (2) and (3), we have a way to evaluate the extent to which a unit’s efficiency
measure is influenced by allowing it to serve in the reference set. However, the
influential DMU is still included in the reference set for all other DMUs. Wilson (1995)
provides a modified model to identify the influence not only on itself but also on all other
units that were evaluated relative to DMU i. We consider the following model[7]:

Max 	i
(k )

s.t.

�
j�1

N

�j yj � 	i
(k )yi,

�
j�1

N

�j xmj � xmi, for m � 1, …, M,

�
j�1

N

�j � 1,

�k � 0,
�j � 0, for j � 1, …, N.

(4)

Here, DMU k is removed from the reference set and the output-oriented DEA model is
solved. We note that Model (4) only needs to be solved for units that are identified as
efficient in Model (2), as an inefficient unit cannot serve as a benchmark in Model (2) and,
hence, has no effect on Model (4). We can then measure the influence that each unit has
on the measurement of efficiency for the remaining DMUs by calculating the average
difference in efficiency scores:

�k �
1

N � 1 �
i�1

N

(	i � 	i
(k )). (5)

Large values of �k indicate that DMU k has a large average influence in the calculation of
efficiency. Unfortunately, there are no guidelines on how Model (5) can be used to
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remove outliers. Large values of �k are indicative of large influence, but this can arise if
the unit is an infeasible outlier or one that is feasible but relatively more efficient than
other units. As a consequence, using this method with an arbitrary decision rule might
remove useful information from the sample.

We apply the super-efficiency model for outlier detection for the data shown in
Figure 3. We define an arbitrary decision rule to delete observations if �k � 0.1 and
iterate through until we obtain a sample where �k 
 0.1 for all remaining DMUs. In
this case, we were able to effectively remove eight DMUs after seven iterations. The
resulting frontier is shown in Figure 4. With the structure of outlier from this
example, the super-efficiency outlier approach works well.

We now consider an alternative data set. For 100 observations, we generate
inputs uniformly on the interval (1,10) with efficient production given by y * �
3x1

0.4. For 80 per cent of the data, we generate inefficiency from ln u � �N(0,0.15)�.
For the other observations, outliers are drawn from � ln u � �N(0,0.1)�. The
negative sign is included to place the points above the frontier. Data for this example
are shown in Figure 5.

We used the same decision rule used in the first example (i.e. delete observations
if the parameter�k � 0.1) and derived the frontier after removing outliers. Only two
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Figure 4.
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DMUs were identified as outliers after only one iteration. The resulting frontier is
shown in Figure 6 after removing the two outliers. In this case, the approach fails
and the resulting frontier is biased with the inclusion of many outlier points. The
failure is due to the proximity of outliers; removal of an outlier will not seriously
affect super-efficiency scores because a neighboring outlier can serve as a
benchmark. We note too that the decision rule for outlier detection is ad hoc and
could in fact remove true frontier points that should be benchmarks.

3. Stochastic data envelopment analysis
We now turn to an alternative approach using the stochastic DEA model with additional
information provided with an assumed distribution for inefficiency. Recognizing that
deviations from the production frontier could be two-sided due to measurement, Banker
(1988) formulates the DEA problem consisting of N linear programs into one linear
program. Defining �1i and �2i as the positive and negative residual, respectively, for
DMU i, the stochastic DEA model[8] seeks to minimize the sum of absolute residuals for
a given quantile 0 
  
 � 1:

Min  �
j�1

N

�1j � (1 � ) �
j�1

N

�2j

s.t.

yj � �j � �
m�1

M

�mjxmj � �1j � �2j ∀ j,

�j � �
m�1

M

�mjxmj � �k � �
m�1

M

�mkxmj ∀ j, k,

�1j, �2j � 0 ∀ j.

(6)

The first set of constraints defines observed production as predicted frontier production,
accounting for positive and negative residuals. Because the residuals are defined to be
positive, the negative residual �2i for each DMU i is subtracted from frontier production.
In the solution to Model (6), it is clear that both residual terms for each DMU cannot be
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Super-efficiency
outlier detection
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positive. The second set of constraints are the Afriat constraints that ensure convexity.
Each DMU’s predicted output evaluated using its own parameters is lower than the
predicted output evaluated using all other DMUs’ parameters. For the given , we obtain
a piecewise linear production frontier where  determines the percentile of the overall
error distribution.

One limitation of the stochastic DEA model is the choice of . Without additional
information, it is not clear what value is appropriate. For our purposes, we will provide
the additional information with an assumption on the distribution of the inefficiency
component. We will assume that the inefficiency (in natural log units) is distributed
half-normally: u � �N(0,�)�. The probability density function is given by:

f(u��) �
�2

���
e

�u 2

2�
2 . (7)

With N1 observations, the log-likelihood function is:

L �
N1

2
ln (2 � �) � N1ln � �

1
2� 2 �

j�1

N1

u 2. (8)

Without any outliers, the DEA estimator provides a useful nonparametric estimator of
the production frontier[9].

The problem becomes more complicated when infeasible points are observed above the
frontier due perhaps to measurement error. We assume that N1 � �N with � 
 1 of the data
points are drawn from the half-normal distribution, while the remaining N � N1 points are
randomly drawn to be above the frontier. We do not require any assumptions on the
distribution of the outlier points; our simulations in the next section consider a uniform
distribution and a half-normal. Our goal is to find the optimal * that maximizes the
likelihood that the points below the frontier are drawn from a half-normal distribution. We
propose solving the SDEA model for numerous quantiles and choosing the one that leads to
maximum likelihood.

For illustrative purposes, we apply the approach to the outlier data shown in Figure 3. We
solved all SDEA models with  � 0.7 to 0.995 in increments of 0.005. The resulting optimal
* � 0.845. The resulting estimate of the production frontier is shown in Figure 7. We
observe the approach has corrected the bias caused by the outliers and does a much better
job in estimating the production frontier and is comparable to the case when outliers were
not present in the data and to the super-efficiency approach discussed earlier. We next
consider applying the model to Figure 5 data. Similar to the previous example, we solved all
SDEA models with  � 0.7 to 0.995 in increments of 0.005. For this example, the optimal
* � 0.82. (Figure 8).

We note that the likelihood approach produces a much better approximation to the
frontier than the outlier approach. In the next section, we consider our approach using
simulated data.

4. Simulations
For our simulations, we assume that the production frontier is given by y * � 3x1

0.4. We
generate input x1 � U(1,10) for N observations. Next we choose the fraction � of points
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that do not contain outliers and generate efficiency for these points with ln � � �N
(0,��)�. For the simulations, we consider three sample sizes: N � 50, 100 or 200. We also
consider two different values for ��, 0.1 or 0.2. The per cent of outliers is controlled by
choosing two different levels of �, 0.8 or 0.9. For the simulations, we randomly generate
a uniform variable between 0 and 1 and determine if the observation is an outlier based
on comparisons to the chosen �.

For the outliers, two different distributions are selected. First, we consider
ln � � � �N(0,�v)�. Here, the points above the frontier, like the points below the frontier,
are generated from a half-normal distribution. We vary �v with �v � 0.1 or 0.2. We also
consider a uniform distribution with ln � � U(vl,0) and vl taking on two values: vl � �0.1
or �0.15. Observed output is calculated as y � e y *

�ln � (y � e y *
�ln u) for the outliers

(non-outliers).
The full design has 48 simulations; for each choice of the outlier distribution, there are

24 simulations depending on three choices each for the sample size and two choices each
for the per cent of outliers �, and the standard deviations of the error components �� and
�v for the half-normal case and vl for the uniform case.
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For each simulation, we solved for all quantiles from 0.995 to 0.70 in increments of
0.005. In each case, we calculated the natural log of the ratio of predicted to observed
output for those points that were below the frontier. The log likelihood function was
evaluated, and the optimal  * was selected as the  associated with the maximum log
likelihood. Predicted values for each observation were then chosen from the values
associated with  *. Unlike the super-efficiency model, the likelihood-based model does
not eliminate any points.

As a benchmark, we also calculate the predicted value obtained from the DEA model
for the non-outlier points. Of course, in real applications, you do not know which points
are outliers; the results are only meant for comparison purposes. In Table I, we present
the simulation results under the scenario that the outliers were generated from a
half-normal distribution. Each line represents one of the 24 simulations. We sort the
simulations in increasing order by the sample size, ��, �v and �. The mean squared error
(MSE) between the true output level and the predicted output level is reported for the
likelihood outlier approach and for DEA on the reduced sample. The true production
output takes on values between 3 and approximately 7.5. For the average input value,
output is approximately 5.93; an error of 0.03 is relatively small relative to the output
values.

Table I.
Mean squared error

between true and
predicted, half-

normal distribution

N �� �� �
Mean squared error

Outlier approach DEAa

50 0.1 0.1 0.8 0.028 0.025
0.9 0.032 0.019

0.2 0.8 0.006 0.008
0.9 0.015 0.008

0.2 0.1 0.8 0.030 0.017
0.9 0.036 0.045

0.2 0.8 0.053 0.039
0.9 0.051 0.032

100 0.1 0.1 0.8 0.005 0.008
0.9 0.023 0.002

0.2 0.8 0.013 0.008
0.9 0.003 0.003

0.2 0.1 0.8 0.043 0.031
0.9 0.015 0.019

0.2 0.8 0.035 0.008
0.9 0.032 0.008

200 0.1 0.1 0.8 0.008 0.005
0.9 0.011 0.002

0.2 0.8 0.014 0.004
0.9 0.005 0.003

0.2 0.1 0.8 0.036 0.008
0.9 0.028 0.019

0.2 0.8 0.044 0.011
0.9 0.015 0.015

Note: a DEA was calculated using a subsample of data where outliers were excluded. The results are
included as a benchmark
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The results of the simulation are encouraging. While DEA on the reduced sample
tends to achieve a lower MSE, the outlier approach provides comparable results. In
6 of the 24 cases, the likelihood approach provides a better fit than DEA, as indicated
by a lower MSE. In the case of 200 observations, the absolute difference in MSE was
less than 0.01 in all but one case. Focusing on the outlier approach, we do not observe
a pattern comparing results across the percentage of outliers generated[10].
However, as the sample size increases, holding all other parameters fixed, we tend to
see an improvement in the outlier approach. Furthermore, the outlier approach
appears to provide similar results across standard deviation choices for both
distributions, ceteris paribus.

The results for the uniform distribution are reported in Table II. We find that the
approach provides quantitatively similar results as the half-normal simulations. In
this case, the outlier approach achieves a smaller MSE in only 4 of the 24
simulations, but the differences tend to be smaller. As sample size increases, ceteris
paribus, the outlier approach usually improves with a lower MSE. Overall, the
likelihood approach is not sensitive to which distribution was chosen to generate the
outliers.

Table II.
Mean squared error
between true and
predicted, uniform
distribution

N �� vl �
Mean squared error

Outlier approach DEAa

50 0.1 0.1 0.8 0.012 0.012
0.9 0.006 0.009

0.2 0.8 0.012 0.018
0.9 0.064 0.004

0.2 0.1 0.8 0.038 0.054
0.9 0.034 0.028

0.2 0.8 0.058 0.025
0.9 0.012 0.012

100 0.1 0.1 0.8 0.038 0.008
0.9 0.011 0.007

0.2 0.8 0.007 0.007
0.9 0.009 0.006

0.2 0.1 0.8 0.034 0.007
0.9 0.088 0.014

0.2 0.8 0.004 0.008
0.9 0.028 0.033

200 0.1 0.1 0.8 0.033 0.003
0.9 0.006 0.004

0.2 0.8 0.006 0.004
0.9 0.006 0.003

0.2 0.1 0.8 0.009 0.010
0.9 0.010 0.004

0.2 0.8 0.017 0.009
0.9 0.013 0.005

Note: a DEA was calculated using a subsample of data where outliers were excluded. The results are
included as a benchmark
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5. Conclusions
In this paper, we presented the outlier detection model using the super-efficiency.
The approach works well when there tends to be few outliers or if the structure of the
outliers allows super-efficiency measures to determine influence. This is not always
the case. In particular, when there are a lot of outliers, there is an increased
probability that the outliers have neighbors that are also outliers. In this case,
removal of one outlier has little effect on estimation because the neighbor outlier
serves as a proxy benchmark.

We developed an alternative method based on the stochastic DEA model of Banker
(1988). The model provides a DEA-type quantile regression that chooses the most likely
DEA frontier for a given quantile. We supplement this model by assuming a distribution
for inefficiency and find the quantile that maximizes the likelihood that the points below
the frontier were generated from the assumed distribution. We provided an example
where the likelihood approach performed extremely well, while the super-efficiency
method did not. Both methods require an iterative approach. The super-efficiency
approach requires an arbitrary decision rule for identifying influential outliers for
removal and subsequent re-estimation of the frontier. The likelihood approach iterates
over all quantiles and chooses the optimal quantile based on an assumed probability
distribution for inefficiency.

We conducted a simulation analysis of the likelihood approach and allowed the
number of observations, the standard deviation of inefficiency, the percentage of
outliers and the distribution for the outliers to vary. The results indicated that the
likelihood approach performs well, achieving comparable results to DEA models across
specifications. Future research could test the sensitivity to incorrect specification of the
inefficiency distribution and robustness in a more complete Monte Carlo analysis. In
addition, the likelihood approach could be extended to estimate a true stochastic frontier
where measurement error affects points above and below the frontier.

Notes
1. See, for example, Hall and Huang (2001), who use kernel regression while imposing

monotonicity, and Du et al. (2013), who impose monotonicity and convexity. Henderson and
Parmeter (2009) provide useful references and discussion.

2. One could also use a directional distance function and estimate the multiple-output,
multiple-input equation.

3. Parmeter and Kumbhakar (2014) provide an excellent discussion of stochastic frontier
analysis.

4. While Banker (1988) appears to be the earliest to coin the phrase “Stochastic DEA”, other
estimators use the phrase. For example, Simar and Zelenyuk (2011) also develop a stochastic
DEA estimator to account for noise.

5. See Afriat (1967, 1972).

6. Banker and Chang (2006) also show that the super-efficiency measure is not useful for ranking
DMUs by efficiency.

7. The variable returns to scale (VRS) BCC model could lead to infeasible points. One could use
the modification proposed to Banker and Chang (2006). We follow Wilson (1995) and use
information from feasible solutions.
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8. The extension to the CNLS version of (6) is straightforward. Instead of minimizing the sum of
absolute errors, we could instead minimize the sum of squared residuals. In the later sections,
we solved both versions but only report the SDEA results. We find the differences to be
insignificant and the model extension obvious.

9. Banker (1993) provided the statistical foundation for DEA and provides a useful discussion
for our approach. Alternative distributions for inefficiency are available but are not
considered in this paper. Future research could extend our method to alternative distributions
consistent with Banker (1993).

10. Of course, a full Monte Carlo study should be used to determine the robustness across
data-generating processes. We leave that for future work.
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