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Abstract

Purpose — The authors analyse the nature of nonlinear long-run causal dynamics between VIX futures and
exchange-traded products (ETPs).

Design/methodology/approach — Nonlinear long-run causal relations between daily price movements in
ETPs and futures are established through a Markov switching vector error correction model (MS-VECM).
Findings — The authors observe time variation in causality with the volatility of volatility. In particular,
demand pressures for VIX ETNs and futures can change in different regimes. The authors observe two
regimes where regime 1 is classified as low-mean low-volatility, while regime 2 is classified as high-mean high-
volatility. The convergence to the long-run equilibrium in the low-mean low-volatility regime is faster than the
high-mean high-volatility regime. The nature of the time varying lead lag relations demonstrates the
opportunities for arbitrage.

Originality/value — The linear causal relations between VXX and VIX futures are well established, with
leads and lags generally found to be short-lived with arbitrage relations holding. The authors go further to
capture the time-varying causal relationships through a Markovian process. The authors establish the
nonlinear causal relations between inverse and leveraged products where causal relations are not yet
documented.
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1. Introduction
The CBOE Volatility Index (VIX) is a popular index that measures the expected volatility of
the S&P 500 index over the next 30 days. VIX derivatives were introduced in 2004, and VIX
Exchange Traded Products (ETPs) followed in 2009. These ETPs are not productive
investments, but instead offer packaged exposure to underlying positions in VIX Futures.
They allow investors to trade exposures to VIX Futures and can be used for genuine hedging
needs of institutional investors. However, they have also captured the imagination of retail
speculators.

The hedging demands associated with these products have driven liquidity to VIX
derivatives markets over time. VIX derivatives markets now rival those of SPX and SPY
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options as preferred venues for trading volatility (O’Neill and Rajaguru, 2024). VIX Futures
have become the dominant market for trading and hedging volatility, futures representing
the forward expectation of VIX and predicting the direction of VIX (see Zhang and Zhu, 2006;
Lin, 2007; Zhang et al., 2010; Konstantinidi and Skiadopoulos, 2011; Shu and Zhang, 2012;
Bollen et al., 2016; Frijns et al., 2016; Dian-Xuan et al., 2017; Chen and Tsai, 2017).

VIX ETPs enable retail investors to engage in volatility derivatives strategies that would
otherwise be inaccessible. They have contributed to financialization of volatility. This is due to
their enabling investors to speculate on stock market volatility, which often leads to taking on
excessive risks. Some of the most popular trading strategies have proven to be unsustainable,
causing catastrophic losses for retail investors (Whaley, 2013). In particular, a long-exposure to
VIX futures indices via ETPs generally (80% of the time) involves daily selling of the nearest
maturity contract at a loss, and buying new contracts at a higher price, a strategy (“contango trap”).

Similar to O'Neill and Rajaguru (2024), we focus on flagship ETPs including the iPath
S&P 500 VIX Short-Term Futures ETN (VXX), ProShares VIX Short-Term Futures ETF
(VIXY), Velocity Shares Daily Inverse VIX Short-Term Exchange-Traded Note (XIV),
ProShares Short VIX Short-Term Futures ETF (SVXY), VelocityShares Daily 2x VIX Short-
Term ETN (TVIX), and ProShares Ultra VIX Short-Term Futures ETF (UVXY). The first
two products target the daily return of SPVXSTER index, the second two a -1x (inverse)
multiple of this return, and the last two a daily return of 2x (leveraged) multiple.

Institutions might prudently use VXX to hedge their portfolios during periods of high
volatility when the futures curve shifts from contango to backwardation, whereas retail
investors typically show a buy-and-hold interest in VXX (O’Neill and Rajaguru, 2024). This is
not a sustainable buy and hold strategy and it cost investors in VXX well over —97% returns
for VXX during 2012 (see Shu and Zang, 2012; Johnson, 2017; Gehricke ef al., 2018) [1]. VIX
ETP strategies involving inverse and leveraged products have also proven to be
unsustainable for retail shareholders.

TVIX suffered a liquidity event when Credit-Suisse temporarily suspended the creation of
new shares on 21 February 2012. TVIX opened at a 90% premium over its $7.62 net assets
per share, but the premium dissipated on March 22-23, 2012, leading to a 30% drop in TVIX
over two consecutive days. A more severe liquidity event happened with the collapse of the
Velocity Shares Daily Inverse VIX Short-Term exchange-traded note (XIV) in February 2018,
known as “Volmageddon.” Ideally, institutions would strategically invest in XIV during
periods of low volatility and reduce their VXX holdings, but they should exit XIV to prevent
losses when the market shifts into backwardation. On 5 February 2018 VIX had a record
intraday return spiking 115% spike from 17 to 37% within just a two-hour period (O’Neill
and Rajaguru, 2024). In response, to avoid the ETN going to zero the issuer triggered an
“acceleration event” signalling the end of the product.

Another unresolved issue highlighted by Volmaggedon is the potential impact of
speculative demand for VIX ETPs on market stability, volatility and equitable outcomes for
investors, such as retail shareholders whose demands might potential are front-run by
market makers. Overall, VIX ETPs are a risky investment that should be avoided by
investors who are looking for a sustainable investment. VIX ETPs have a role to play in
facilitating tactical hedging requirements of institutional investors. Retail investors who are
looking to invest in a sustainable way should avoid speculating on VIX ETPs and instead
invest in assets that create real value.

O'Neill and Rajaguru (2024) examined the causal relationships between VIX, VIX ETPs,
and VIX Futures across various market conditions. Among the ETPs analysed in their study,
VXX offers daily long exposure to a VIX futures index with a 30-day maturity. TVIX
provides daily two-times leveraged exposure, while XIV offers daily inverse exposure.
Additionally, their study also included the corresponding exchange-traded funds (ETFs):
VIXY, UVXY, and SVXY. However, their study assumes that the nature of the causal



relationship is invariant across the time. Moreover, analysis of causal behaviour of VIX, VIX
derivatives and ETPs needs to capture the regime-switches in VIX. Baba and Sakurai (2011)
use a Markov-switching regression techniques, which allows the VIX index to be in one of
three states: tranquil, turmoil, or crisis and relate the regime-switching probability to term
spreads and other macroeconomic variables. For investors, the findings suggest that they
should be aware of the different regime shifts in VIX and regulate their investment strategies
accordingly — for strategies to sustainable they need to be dynamic and allow for these
regime changes. There is also a potential regulatory concern here about the sustainability of
retail speculation in these markets. Markov-switching GARCH models have been utilised to
gauge the predictability of high volatility incidents in the S&P 500, to encourage more
sustainable and optimised, dynamic long term investment strategy (De la Torre et al., 2021).
The implementation of Markov-switching GARCH models has been shown to improve
portfolio performance, particularly during periods of high and extreme volatility. Bildirici
et al. (2022) explored the regime-dependent causal relationships and contagion between VIX
and key economic indicators such as oil and gold prices, examining causality across both low
and high return regimes and volatility regimes. Moreover, the inclusion of a regime-
switching process in pricing models for VIX and S&P 500 options has proven beneficial
(Papanicolaou and Sircar, 2014). In a similar vein, regime-switching stochastic volatility
models have demonstrated a superior fit for market prices of VIX options compared to the
Heston model, thereby enhancing the hedging of VIX options and other volatility derivatives
(Goutte et al., 2017). Broader applications involve employing a Markov regime switching
method to study short-term sovereign credit default swap (SCDS) spreads. The results
indicate that in adverse conditions, investors tend to become more risk-averse and shift their
funds to safer assets (Ma ef al., 2018). All of these studies suggest that static approaches are
often not sustainable, and dynamic strategies which incorporate regime-shifting are more
appropriate for volatility markets.

We hypothesise that, similar to VIX Futures, VIX ETPs also precede changes in the VIX
itself, a phenomenon described as “the tail wags the dog” (see Bollen et al., 2016).We also
explore how various ETPs affect VIX Futures across different volatility environments,
including higher and lower volatility regimes, as well as end-of-day effects. To the best of our
knowledge, this is the first study which addresses the time varying causal relationship
between VIX Futures and VIX ETPs using the regime switching approach. Additionally, we
investigate the impact of term structure on lead-lag relationships, particularly how traders in
segmented markets might adjust their positions in anticipation of volatility shifts, as
evidenced by movements from contango to backwardation in the futures curve [2].
Ultimately participants looking to trade and hedge volatility in VIX product markets in a
sustainable way will benefit from a better understanding of price discovery mechanisms
particularly in unstable market conditions. In this way, sustainable strategies need to be
dynamic and response to different volatility regimes.

This paper is organised as follows: Section 2 provides a description of the VIX product
data. Section 3 outlines the methodologies employed and presents the results. The paper
concludes with Section 4.

2. VIX product data

We analyse the time series of prices in 6 Exchange-Traded Products (ETPs) against the S&P
500 VIX Futures index which underlies their respective benchmarks. We focus on the same
flagship ETPs studied by O’Neill and Rajaguru (2024), being VXX, VIXY, XIV, SVXY, TVIX,
and UVXY. Again, the first two products target the daily return of SPVXSTER index, the
second two a -1x (inverse) multiple of this return, and the last two a daily return of 2x
(leveraged) multiple.
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Table 1.
Unit root test results

Intraday trade data for the two nearest maturity VIX Futures contracts and the S&P 500
VIX Short-Term Total Return Index (SPVXSTR) were obtained from the Thomson Reuters
Tick History (TRTH) database, accessible through the Securities Industry Research Centre
of Asia—Pacific (SIRCA) with precision up to the nearest millisecond. Daily trade data for
VXX, VIXY, XIV, SXVY, TVIX, and UVYX was sourced from Wharton Research Data

Services, covering the trades on the NYSE over the period from each ETP’s inception to
March 31, 2018.

3. Analysis of causality of price movements

3.1 Unit roots and cointegration

The unit root properties of the log variables in our analysis are examined through the ADF,
the DF-GLS, the PP test, and the KPSS test. The results are reported in Table 1 and it shows
that all variables are integrated process of order 1 at the 5% level of significance.

Since the variables are I(1), we further investigate the long-term equilibrium relationship
among log-transformed variables using the Johansen and Juselius (1990) cointegration
testing procedure. This method involves estimating the following pth-order vector
autoregression (VAR) process, where p is determined by the Schwarz Criterion (SC).

In(SPXSTR;) In(SPXSTR,_;)
In(TVIX,) & | In(TVIX) B
In(VXX)) _ﬂ+z‘:21HZ In(VXX, ) +0OD; +¢,t=1,2,..,T,and
In(XIV,) In(XIV,_;)
In(SPXSTER)) , In(SPXSTER,_,)
In(VIXY,)) B In(VIXY,_;) B
In(UVXY)) ﬂ+;m In(UVXY, ) +0D,+¢e,t=1,2,..,T
In(SVXY;) - In(SVXY,.,)

The A4y statistic and the A, statistic results reported in Table 2 suggests one cointegrating
vector.

Ln@SPVXSTR) Ln(TVIX) Ln(VXX) LNXIV) Ln(VIXY) LnUVXY) Ln@SVXY)

Levels

ADF —207 —281 —273 —266 -1.16 —~1.09 —1.04
PP —2.09 —2.80 —262 —265 -1.11 -1.07 -1.03
DF-GLS 072 181 —221 117 021 081 —0.90
KPSS 84.22" 33517 24677 2079™ 12.69™" 12.85™" 131"

Ln(SPVXSTR) Ln(TVIX) Ln(VXX) LNXIV) Ln(VIXY) LnUVXY) LnSVXY)
First differences

ADF  —240357" 77923 123957 15094  —1138" &4 = 723"
PP —428.66" —74199"" 317097 33370  —11434™ 1262 1336
DF- —240.33"" —23.39™ —63.18™" —38.18™" —1131™" —853™  _723™
GLS

KPSS 0.063 0.045 0.038 0.063 0.07 0.09 0.06
Note(s): ", " and ™ denotes the rejection of null at the 10%, 5% and 1% level, respectively

Source(s): Authors’ own work




Model 1 Model 2
Trace statistic  Maximum eigen value statistic = Trace statistic =~ Maximum eigen value statistic
r=0 7876612 5162169 936,160 700304
r<i 2714443 15.29916 23.5856 16.7089
r<2 11.84527 10.76851 6.87675 6.53306
r<3 1.076758 1.076758 0.34369 0.34369

Note(s): " and ™ denotes the rejection of null at the 5% and 1% respectively
Model 1: Cointegration between In(SPVXSTR), In(TVIX), In(VXX), In(XIV)

Model 2: Cointegration between In(SPVXSTR), In(VIXY), In(UVXY), and In(SVXY)
Source(s): Authors’ own work
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Table 2.
Cointegration test

3.2 Analysis of time varying causality between VIX futures and ETPs in high and low
volatility regimes

In this section, we fit the Markov-switching vector error correction model (MS-VECM) for
three ETNs and then apply the same model for the corresponding ETFs. The mean, variance
and covariance of the residuals, are assumed to be different for regimes. We find that the
autoregressive coefficients are statistically invariant across the regimes and hence we
estimate the model with regime switching in mean and variance-covariances.

Let s; be a discrete latent variable that identifies which regime the market is in at time .
While the specific regime at any given time # remains unknown, we can determine the
conditional probability of the market being in any particular regime. For instance, if there are
two regimes, then s; = 1 corresponds to a low-volatility regime and s; = 2 to a high-volatility
regime. Each regime is defined by distinct conditional distributions for the variables
involved. We estimate the following model:

b
X = u(sy) + ZdD,-Xt_i +gfors, =1,2,...,m,

=1
where X, = [Ln(SPXVIXSTR) Ln(TVIX) Ln(VXX) La(XIV)],

u(s)) = [py(s:)  po(s:)  ps(s) py(ss)]is the regime-specific mean, e ~ N (0, %) is the
distribution for the regime-specific residual at time ¢,

3, 1s the regime-specific variance-covariance matrix,
@, is the coefficient matrix for lag ¢, and

The model is designed such that each regime exhibits distinct mean values and covariance
matrices. This regime-shifting approach is based on the premise that the parameters of the
VECM process, specifically the intercept and covariances, are contingent upon an latent
regime variable, s,. Both the intercept and variance-covariances are functions of the states in
a Markov chain, offering considerable flexibility for modelling time series that experience
regime shifts, as noted by Clements and Krolzig (1998).

We employ the estimation procedure developed by Lanne et al. (2010) to derive the
parameters of the model. If the errors are conditionally normally distributed then we can
utilise a maximum likelihood (ML) estimation to concurrently estimate the parameters of the
model. If conditional normality fails, then this method produces pseudo-maximum likelihood
estimates. We find that errors are normally distributed and hence it is not a series concern for
our model.
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The optimal lag length and the number of regimes are justified through SC as in
Psaradakis and Spagnolo (2003, 2006), Herwartz and Liitkepohl (2011) and Liitkepohl and
Netsunajev (2013) [3].

The state variable follows stationary Markov process and is characterised by the
transition matrix IT. The entries of the IT matrix are transition probabilities from state 7 to
state j, pj, where 4,j = 1,23, ... m

The information criteria suggests that the optimal number of regimes is m = 2. The
regime classification by month shows high-mean high-volatile periods are from August 2011
to November 2011, September 2015 to February 2016 and August 2017 to February 2018. We
also show the results of the same model applied with VIXY, UVXY, and SVXY ETFs in place
of ETNs VXX, TVIX and XIV, respectively.

The estimated coefficients of long-run equation and the corresponding error correction
terms are reported in Table 3 Panel A. The results show that regime 1 is classified as low-
mean low-volatile, while regime 2 is classified as high-mean high-volatile. In particular, the
volatility in regime 2 is about 25 times larger than regime 1 indicating that the market is
unstable in regime 2. The error correction coefficients indicate that markets return to
equilibrium more swiftly in the low-mean, low-volatility regime (regime 1) compared to the
high-mean, high-volatility regime (regime 2).

Model specific coefficients in Table 3, Panel A demonstrate the time variation in causality
with the volatility of volatility. The findings suggest that demand pressures for VIX ETPs
and futures can change in different regimes. In particular, Ln(SPVXSTR) responds more
sensitively to Ln(VXX) in regime 1 (the coefficient is 1.09) than in regime 2 (the coefficient is
0.71). VXX therefore tends to be more dominant in low volatility (of volatility) regimes, with
VIX futures more sensitive to VXX in regime 1 than regime 2. Ln(XIV) exhibits a similar
influence in the negative causal domain to Ln(TVIX) in regime. The impact of Ln(TVIX),
however, intensifies in regime 2. This may be due to price effects from surges in hedging
demand for leveraged products in the face of higher volatility.

The results for ETFs however do not vary materially between regimes 1 and 2. VIXY is
consistently dominant in both high and low volatility regimes. Ln(SPVXSTR) responds with
roughly the same sensitivity to Ln(VIXY) in regime 1 (the coefficient is 0.98) than in regime 2
(the coefficient is 0.97). Moreover, the coefficients of UVXY and SVXY are substantially
lower than TVIX and XIV, respectively, in both regime 1 and 2.

In this section, we further investigate the reliability of the long-run relationships between
variables. Comprehensive studies indicate that temporal aggregation and systematic
sampling can alter the dynamics of relationships and compromise short-term causal analysis
in low-frequency data (Geweke, 1982; Rajaguru, 2004; Rajaguru and Abeysinghe, 2008;
Rajaguru et al, 2018). Rajaguru and Abeysinghe (2008) demonstrated that long-term
cointegrating relatlonshlps remain intact across all levels of aggregation and sampling
intervals. Based on these findings, we use high-frequency data to establish long-term
relationships through the Vector Error Correction Model (VECM). The causal relationships
for all other combinations, standardized by cointegrating equations for each regime, are
detailed in Table 3 Panel B. The reverse causality between Ln(SPVXSTR) and Ln(VXX)
shows the opposite pattern. SPVXSTR is more dominant in regime 2 (the coefficient is 1.41)
and less so inregime 1 (the coefficient is 0.91). Arguably the tail-wags the dog and SPVXSTR
is more sensitive to VXX in regime 1 than 2. The causality between Ln(XIV) and Ln(VXX) is
very different to that between Ln(XIV) and Ln(SPVXSTR), particularly in regime 1 (the
coefficient is 1.02). The causality between Ln(TVIX) and Ln(XIV) also varies substantially
between regimes, with coefficient 0.98 in regime 1 and 14.2 in regime 2.

The same is however not true of the corresponding ETFs, SVXY and VIXY, respectively.
In fact, in almost all cases for ETFs the causality in regime 1 and 2 do not look notably



Panel A: Regime specific coefficients — cointegrating vector

ETNs (29 November 2010 through 15 February 2018) ETNs (3 October 2011 through 31 March 2018) ETFs (3 October 2011 through 31 March 2018)

Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2
I 7.658449 7.69224 7.40075 9.19638 0 5.3876 5.486448
Ln(TVIX) 0.037468 0.10821 0.01060 0.25611 Ln(UVXY) —0.00409 —0.00575
Ln(VXX) 1.087805 0.706911 1.01639 0.22492 Ln(VIXY) 0.97557 0.970747
Ln(X1V) —0.03815 —0.00758 —0.00459 —0.0244 Ln(SVXY) —0.00907 —0.0083
c 0.003646 0.090202 0.01547 0.023741 c 0.0038 0.04002
ECM (-1) -0.12 —0.05 -0.13 —0.05 ECM (1) —0.18 —0.07
Panel B: Regime specific coefficients — cointegrating vector
ETNs (29 November 2010 through 15 February 2018) ETFs (3 October 2011 through 31 March 2018)

Regime 1 Regime 2 Regime 1 Regime 2

Ln(TVIX) — Ln(SPVXSTR) 0.037468 0.10821 Ln(UVXY) - Ln(SPVXSTR) —0.00409 —0.00575
Ln(VXX) — Ln(SPVXSTR) 1.087805 0.706911 Ln(VIXY) — Ln(SPVXSTR) 0.97557 0.970747
Ln(XIV) — Ln(SPVXSTR) —0.03815 —0.00758 Ln(SVXY) — Ln(SPVXSTR) —0.00907 —0.0083
Ln(SPVXSTR) — Ln(TVIX) 26.68944 9.24129 Ln(SPVXSTR) - Ln(UVXY) —244.618 —173.822
Ln(VXX) - Ln(TVIX) —29.0329 —6.53277 Ln(VIXY) — Ln(UVXY) 238.642 138.738
Ln(XIV) - Ln(TVIX) 1.018202 0.070049 Ln(SVXY) — Ln(UVXY) —2.2182 —1.44289
Ln(SPVXSTR) — Ln(VXX) 0.919282 1.414605 Ln(SPVXSTR) — Ln(VIXY) 1.02504 1.03014
Ln(TVIX) - Ln(VXX) —0.03444 —0.15307 Ln(UVXY) — Ln(VIXY) 0.00419 0.00593
LnXIV) - Ln(VXX) 0.03507 0.01072 Ln(SVXY) - Ln(VIXY) 0.0093 0.00855
Ln(SPVXSTR) — Ln(XIV) —26.2123 —131.926 Ln(SPVXSTR) — Ln(SVXY) —110.278 —120.467
Ln(TVIX) - Ln(XIV) 0.982123 14.27573 Ln(UVXY) — Ln(SVXY) —0.450816 —0.693049
Ln(VXX) — Ln(XIV) 2851389 93.26003 Ln(VIXY) = Ln(SVXY) 107.584 116.943

Note(s): Table shows Markov Switching VECM Model Estimates of the period. The ETN model is fitted over the period 29 November 2010 through 15 February 2018.
The ETF model is fitted over the period 3 October 2011 through 31 March 2018. Regime 1: Low Mean Low Volatility; Regime 2: High Low Mean High Volatility. All
estimates are statistically significant at the 1% level of significance. For the robustness, the ETN model is fitted over the period 3 October 2011 through 31 March 2018

Source(s): Authors’ own work
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different. It is possible that this clear difference between ETNs and ETF's could be due to the
promissory note structure of ETNs.

This is an area for future research, and represents a significant gap in the existing
literature. ETNs are structured, unsecured products that are issued as senior debt notes,
while ETFs represent a stake in an underlying futures positions, providing investments into
a fund that directly holds the assets it tracks. The difference in structure for ETNs could
break the causal links with ETFs and the SPVXSTR in two ways. Firstly, ETN creation
involves issuing new debt to create new units. Unlike ETFs, the creation of units is governed
by capital requirements set by bank regulators. An extreme example of this was the pause in
TVIX issuance in on February 21, 2012, demand exceeding supply of units and the market
price reaching almost 90% above its underlying indicative value. Secondly, for ETNs there is
no need for the issuer to strictly hold the assets as a separate pool, nor is there assurance that
the issuers will not engage in proprietary trading or hedging activities which might be
contrary to interests of note holders. These activities could well extend beyond exposures to
VIX derivatives. As a result, an issuer of XIV, for example, need not strictly replicate/hedge
-1x SPVXSTR, and their willingness to hedge versus take on balance sheet risk could
fluctuate, and could depend on their broader positioning and volatility exposure.

The causal relations between ETFs and ETNs could therefore change in higher volatility
regimes, where the ability to create new units is constrained by capital requirements or where
tolerance for balance sheet risk of issuers changes.

4. Conclusion

This paper studies causal relations between VIX Short-Term Total Return Index
(SPVXSTR) and 6 VIX ETPs, including 1x long ETF and ETN, -1x inverse ETF and
ETN, and 2x leveraged ETF and ETN. With the strong growth in VIX futures markets we
observe changing causal relations between VIX ETPs and Futures over time.

Cointegration tests reveal unique stable long-run equilibrium relations between VIX
ETPs and Futures. Regime shifting models demonstrate the time variation in causation with
the volatility of volatility, in particular highlighting different causal relations between ETFs
versus ETNs, with causality more stable between high and low volatility regimes for ETFs.
In our models, regime 1 is classified as low-mean low-volatile, while regime 2 is classified as
high-mean high-volatile, with about 25 times larger volatility than regime 1. Markets return
to equilibrium more swiftly regime 1 compared to 2.

We observe time variation in causality with the volatility of volatility. In particular,
demand pressures for VIX ETNs and futures can change in different regimes. For example,
SPVXSTR sensitive to VXX in regime 1 than regime 2, and XIV is substantially more
sensitive to TVIX in regime 2 than 1. On the other hand, we observe very little variation in
causality between regimes 1 and 2 for the corresponding ETFs.

It is possible that this clear difference between ETNs and ETFs could be due to the
promissory note structure of ETNs which do not demand strict replication/hedging the
issuer of TVIX and XIV need strictly hedge 2x and -1x SPVXSTR, respectively. This may be
attributable to the stricter replication requirements under ETF structures. In the case of
ETNs, market maker hedging risk tolerances may be allowed to vary in different market
conditions. Thus, the associated price impact of replication could be varied in higher
volatility regimes.

Notes

1. Retail shareholders have also potentially been “front-run” by market-makers, particularly in
complex VIX ETP markets. Hill (2013) considers the viability of VIX-based hedging strategies
including ETPs, futures and options relative to alternative hedging strategies. Alexander and



Korvilas (2013) discuss VIX ETNs as potentially a valuable source of diversification to non-
speculative investors, while at the same time highlighting problems which might include front-
running and investors retaining credit risk of issuers which are made more relevant in light of the
recent collapse of XIV.

2. Bansal ef al. (2015) demonstrates that equity volatility serves as a determinant of future Treasury
term-structure volatility in terms of level and slope.

3. Information selection criteria are not tabulated here for the sake of brevity. Results are available
upon request.
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