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Abstract
Purpose – As the demand for human–robot collaboration in manufacturing applications grows, the necessity for collision detection functions in
robots becomes increasingly paramount for safety. Hence, this paper aims to improve the existing method to achieve efficient, accurate and
sensitive robot collision detection.
Design/methodology/approach – The external torque is estimated by momentum observers based on the robot dynamics model. Because the
state of the joints is more accessible to distinguish under the action of the suppression operator proposed in this paper, the mutated external
torque caused by joint reversal can be accurately attenuated. Finally, time series analysis (TSA) methods can continuously generate dynamic
thresholds based on external torques.
Findings – Compared with the collision detection method based only on TSA, the invalid time of the proposed method is less during joint reversal.
Although the soft-collision detection accuracy of this method is lower than that of the symmetric threshold method, it is superior in terms of
detection delay and has a higher hard-collision detection accuracy.
Originality/value – Owing to the mutated external torque caused by joint reversal, which seriously affects the stability of time series models, the
collision detection method based only on TSA cannot detect continuously. The consequences are disastrous if the robot collides with people or the
environment during joint reversal. After multiple experimental verifications, the proposed method still exhibits detection capabilities during joint
reversal and can implement real-time collision detection. Therefore, it is suitable for various engineering applications.

Keywords Real-time collision detection, Suppression operator, Mutated external torque, Time series analysis, Dynamic threshold

Paper type Research paper

1. Introduction

As the demand for automatic production increases, collaborative
robots are being gradually applied to production lines to assist
employees in making products. In human–machine interaction
scenarios, workers may accidentally collide with collaborative
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robots. To reduce the degree of damage to all parties after a
collision, it is necessary for the robot to detect the collisions in time.
Collisions in robots canbedivided into two types according to the

intensity of the collision, namely, hard collision and soft collision.
The difference between them is the collision duration and
characteristics of external torque changes (Park et al., 2020). When
a robot is hit by a rigid object, it is usually called a hard collision due
to its short duration. When the robot comes into contact with an
elastic/flexible/soft object or is subjected to a slowly increasing
external force, it is usually called a soft collision due to its long
duration. Concerning hard collisions, the external torque shows a
trend of rapid increase and is accompanied by a rigid impact.When
the object is struck, it undergoes an elastic, undamped impact,
rapidly dissipating energy, which may lead to deformation or
damage. As for soft collisions, the robot cannot escape the collision
state quickly and is subject to continuous resistance. It keeps
moving synchronously with the object being hit or absorbs the
resistance. At this time, the external torque will slowly increase, and
no rigid impactwill occur.
By analyzing how the robot obtains information, robot

collision detection methods can be divided into two categories:
those with external sensors and those without external sensors
(Heo et al., 2019). External sensors provide contact information
for robots to interact with the outside world, but they also
increase structural complexity and introduce data consistency
issues (Liu et al., 2021). The external sensors commonly used for
implementing robot collision detection are force/torque sensors.
The physical identification method for applying arm surface

materials is also limited by the behavioral cognition of the collision
subject. In a nonstructurally constrained environment, there is an
imbalance between coverage integrity and random collision
response.
According to threshold characteristics, conventional robot

collision detection methods without external sensors can be divided
into two types: static threshold method and dynamic threshold
method. Based on these types, further classification can be made
according to the dependence on intelligent algorithms, as shown in
Table 1. Each method in the table corresponds to a representative
literature andwill be introduced later.
The static threshold method generally sets a fixed threshold,

and its range is larger than the statistical peak value of previous
experimental values. For external torque acquisition, besides
the direct estimation method (Suita et al., 1995) and the
estimation method based on harmonic reducer deformation

(Wang et al., 2023), numerous observer-based estimation
methods have been proposed (De Luca et al., 2006; Haddadin,
2013; De Luca and Mattone, 2005; Duan et al., 2023; Ren
et al., 2018). However, collision detection based on these
external torque estimationmethods needs to bemore sensitive.
For the range limitation problem of static threshold methods,

neural networks (NNs) and deep learning can effectively extend the
statistical characteristics of time series to the accumulation and
prediction of data patterns, and a high collision detection
performance can be obtained by using limited and fixed training
targets. The deep NN CollisionNet eliminates the cumbersome
heuristic decision-making process proposed to detect collisions
(Heo et al., 2019). In addition, a multilayer NN is used to fit the
robot dynamics data model to supplement or replace the physical
model, which plays an important role in collision detection
(Sharkawy and Aspragathos, 2018). To set the collision detection
threshold closer to the changing trend, using the convolutional NN
(CNN) to compensate for the uncertain data characteristics based
on the existing dynamic model (Park et al., 2020). After training on
the collision data set, the fuzzy system achieved fast and accurate
collision detection (Dimeas et al., 2015). Intelligent algorithms can
be used to design not only static thresholds but also dynamic
thresholds, such as the long short-term memory network, which is
used to designhigh-fit thresholds (Zhang et al., 2023).
However, the training resource consumption of intelligent

algorithms and the iterative nested regression of heuristic algorithms
all put forward computing power requirements for real-time robot
control frameworks. To address this problem, the dynamic
threshold method, which usually models the external torque
representing the uncertainty of the model and sets the output
threshold according to the law, is recommended (Zhang andHong,
2019; Sotoudehnejad and Kermani, 2014; Li et al., 2021; Indri
et al., 2015). Dynamic thresholds generated by methods lacking
statistical toolsmay exceed symmetric static thresholds or be subject
to certain application conditions,making them ineffective.
For the above problems of collision detectionmethods based on

dynamic thresholds, time series analysis (TSA) in statistics
provides some ideas. Although statistical methods are rarely used
in the field of robotics, TSA has shown excellent results in fault
detection problems in different fields (Feng et al., 2023; Lin et al.,
2019; Liu et al., 2019). Collisions during robotmovement can also
be regarded as system anomalies. Therefore, applying TSA to
robot collision detection is feasible. The sensorless collision-
detectionmethod based only onTSA generates dynamic thresholds

Table 1 Collision detection method based on the force/torque sensorless

Collision detection method Advantage Disadvantage

1. The static threshold method
Based on Nonintelligent algorithms (De Luca and Mattone, 2005) – Simple threshold – Limited range

– Invalid occasion
Based on intelligent algorithms (Park et al., 2020) – Detection performance moderate – Data set need

–Much calculation
2. The dynamic threshold method
Based on nonintelligent algorithms (Zhang et al., 2021) – Detection performance high

– Real-time
– Invalid occasion

Based on intelligent algorithms (Zhang et al., 2023) – Detection performance high – Data set need
–Much calculation

Source: Authors’ own work
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based on historical information of external torques, conforms to the
regular control of data feature statistics, and can achieve more
accurate and sensitive collision detection (Zhang et al., 2021).
However, there is a blind spot in the detection of joint reversals,
which affects collisiondetectionperformance.
In this paper, we propose a method that suppresses abnormal

external torque estimates to solve the problem of short-term
identification failure of collisions when robot joints change their
direction.Thismethod is integratedwithTSA to build a datamodel
that continuously generates high-fit dynamic thresholds after the
initialization conditions are met, and achieves sensitive and real-
time collision detection. The new collision detection method
improves the short-term identification failure of collisions during
joint reversal and reduces the detection delay.When it operates in a
robot control system, the blockdiagram is shown inFigure 1.
The remainder of this paper is organized as follows. Section 2

introduces the external torque estimation based on momentum
observers and the problem of the collision-detectionmethod based
only on TSA. The proposed method is described in Section 3.
Section 4 presents experimental verification and data analysis.

2. Problem description of the collision detection
method based only on TSA

2.1 Dynamicmodel construction
When the robot is running in the position-control mode, the
angle difference between themotor and link sides can be ignored.
If the robot comes in contact with the external environment
under this condition, the dynamicmodel is given by equation (1):

M qð Þ€q1C q; _qð Þ _q1G qð Þ1 f _qð Þ
¼ sm 1 sext

(1)

where q, _q, €q are the joint position, joint velocity and joint
acceleration, respectively;M(q) is the inertial matrix; C q; _qð Þ is a
matrix of the centrifugal and Coriolis torques; G(q) is the
gravitational torque vector; f _qð Þ is the friction torque vector
obtained by theCoulomb-viscous frictionmodel; sm is the output
torque vector of the jointmotor; sext is the external torque vector.

2.2 External torque estimation
The dynamic model shown in equation (1) requires the joint
acceleration €q to calculate the external torque, but the acquisition
of €q depends on the sensor and cannot be calculated directly
from the velocity difference. Therefore, the observer method can
be used to obtain the external torque (Haddadin et al., 2017).
The generalized momentum observer based on the dynamic
model is shown in Figure 2.

Because _M qð Þ � 2C q; _qð Þ is an antisymmetric matrix, matrix
_M qð Þ can be simplified as shown in equation (2):

_M qð Þ ¼ C q; _qð Þ1CT q; _qð Þ (2)
To facilitate the subsequent derivation of equations, we define
the vectorX q; _qð Þ as shown in equation (3):

X q; _qð Þ :¼ G qð Þ1C q; _qð Þ _q1 f _qð Þ � _M qð Þ _q
¼ G qð Þ1 f _qð Þ �CT q; _qð Þ _q (3)

The obtained generalizedmomentum p is shown in equation (4):
p ¼M qð Þ _q (4)

Combining equations (1) and (4), the derivative of the
generalizedmomentum _p is given by equation (5):

_p ¼ CT q; _qð Þ _q �G qð Þ � f _qð Þ
1 sm 1 sext

(5)

The symbol r is replaced with sext and combined with equation
(3) to obtain the dynamic response of the momentum observer,
as shown in equation (6):

_̂p ¼ sm � X̂ q; _qð Þ1 r

_r ¼ KO _p � _̂p
� �

8<
: (6)

where Ko is the diagonal gain matrix of the observer; r(t) is the
observer output, which can be obtained by integrating _r, as
shown in equation (7):

r ¼ KO p tð Þ �
ðt
0

_̂p sð Þds� p 0ð Þ
� �

(7)

Because p ¼ M̂ qð Þ _q, and under ideal conditions, M̂ ¼M and
X̂ ¼ X, the dynamic relationship between sext and r is given by
equation (8):

_r ¼ KO sext � rð Þ (8)

The transient response of component r is related to the same
component of sext. In the limit case (KO!1), r and sext satisfy
the relationship in equation (9):

Figure 1 Block diagram of the closed-loop control system

Collaborative 
Robot

Momentum 
Observer

External torque estimation

Collision detection

Desired
Trajectory

External torque 
mutation suppression 

Dynamic threshold 
generation based on TSA 

Source: Authors’ own work

Figure 2 Block diagram of momentum observer
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r � sext (9)

2.3 Short-term failure during the joint reversal
The collision detection method based only on TSA (Zhang et al.,
2021) uses the autoregressive model (AR) as the external torque
time-series model. Although collisions can be detected without
adjusting the motion trajectory parameters, short-term
recognition failure still occurs during the joint reversal. The
reason for suspending the method is that the mutated external
torque caused by joint reversal causes abnormal statistical
information in the time series model, which makes the model
unstable. The short-term invalid time of this method is tpause 5
trecover 1 tinit, where trecover is the time required for the external
torque to return from the abnormal value to the normal value and
tinit is the time required to initialize themodel coefficients once.
Joint velocity is an important feature for judging joint

reversals. To maintain the stability of collision detection, the
condition for the judgment of joint reversal is chosen to be
_q � 0:09rad=s in this paper. That is, lower than the velocity of
joint creep _q ¼ 0:1rad=s can be regarded as a sign of clockwise/
counterclockwise. The external torque of Joint 1 when the
robot runs a sinusoidal trajectory and the dynamic threshold
generated by this method are shown in Figure 3. Notably, there
is an absence of dynamic thresholds within the region
highlighted by the arrow in Figure 3. However, this period
lasted for 536ms. If a collision occurred at this time, the
method would be invalid.

3. Collision detection based on external torque
mutation suppression and TSA

Generally, when a joint changes direction, it goes through three
states in sequence: the motion state, transition state between
motion and rest and rest state. To solve the problem of the short-
term failure of collision detection during joint reversal, it is
necessary to handle the mutated external torque during this
period.

3.1 Improvement based on external torquemutation
suppression
Inspired by the approach that compensates for model
uncertainty (Cao et al., 2019), the operator to suppress

mutated external torques is constructed using attenuation
exponential and cosine functions based on joint velocity
characteristics. The suppressed external torque is obtained by
multiplying the external torque and the suppression operator.
The suppression operatorOsp is given by equation (10):

Osp ¼ cos e�r� _q
2Þð Þð Þn

ssp ¼ sext �Osp

8><
>: (10)

where r is used to adjust the degree of external torque tracking
when the joint does not change its direction; n is used to adjust
the suppression effect of the external torque during joint
reversal, which directly affects the stability of the timing model;
ssp is the suppressed external torque.
When the robot runs a sinusoidal trajectory, the results of the

external torque of Joint 1 before and after the suppression
process under different r and n are shown in Figures 4 and 5,
respectively.When r¼ 150 and n¼ 16, the suppressed external
torque changed smoothly during joint reversal.
From equation (10), the suppressed external torque is

directly affected by the value of the suppression operator.When
Osp ¼ 0, the suppressed external torque is 0. When Osp � 0.1,
the suppressed external torque caused by collisions can still be
reflected. When Osp < 0.1, the suppressed external torque

Figure 3 The defect of the collision detection method based only on
TSA

! WARNING:
No dynamic 
thresholds.

Source: Authors’ own work

Figure 4 The comparison of external torques before and after
suppression with different r

Source: Authors’ own work

Figure 5 The comparison of external torques before and after
suppression with different n

Source: Authors’ own work
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caused by the collision is difficult to reflect, and the method
proposed in this paper can be regarded as invalid. The values of
the suppression operator for different r and n are shown in
Figure 6.
Osp is symmetrical about the vertical line where the joint

velocity is 0. As shown in Figure 6, when r ¼ 150, n ¼ 16 and
Osp ¼ 0.1, the corresponding joint speed value was
approximately60.0657 rad/s.
In this paper, we combined external torque mutation

suppression and TSA to obtain a novel collision detection
method. The process of this method is illustrated in Figure 7,
where Processes 1 and 2 are used for offline simulation, and
Process 3 is used for online robot control. However, as shown
in Figure 3, the collision detection method based only on TSA
still needs to wait for the re-initialization, which can resume
detection after the completion of joint reversal. According to
the above analysis, the short-term failure duration of the
method used in this paper is significantly shorter than that of
themethod based only onTSA.
The pseudocode corresponding to Figure 7 is as follows:
Collision detection method based on external

torque mutation suppression and TSA.

Input: Suppression parameters 1, r
Suppression parameters 2, n
Model order, u
Prediction length, L
Confidence level, g
Forgetting factor, l
Threshold Margin, c
The total amount of sample data, N
Number of external torque exceeding the

threshold, C
Original external torque, sext
Joint velocity, _q
Running time, run_time

Output: Collision detection result, result
1: while t� run_time do
2: t/ t1 1;
3: Osp  cos exp �r � _q2ÞÞÞn���

; //Suppression
operator initialization.
4: ssp/ sext

� Osp; //External torque mutation
suppression.
5: if abs (sext � ssp)�1e-3 && firstinit ¼ ¼
false //Determine whether the initialization

conditions are met.
6: continue;
7: else if abs (sext� ssp)< 1e-3 && firstinit¼
¼ false
8: sSP/ [sSP · ssp];
9: else
10: sSP/ [sSP(2: end) ssp];
11: end if
12: len/ len11;
13: if len¼¼ N && firstinit¼¼ false
14: h / LS_init(sSP); //Using LS algorithm
to Initialize model coefficients.
15: firstinit/ true;
16: continue;
17: endif
18: if fistinit¼¼ true
19: spd, gup, gdown / TSA_generate_dyth (sSP,

Figure 7 Flow chart of the method proposed in this paper
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velocities and 

external torques

(2) Determine external
torque mutation 

suppression parameters

(3) Obtain external 
torques as initial 

sample data

(4) Determine model 
order using LS and FPE

(1) 

(2) The absolute 
difference in external torque 

before and after suppression is 
less than 0.001 ?

Process 2 (Offline)

Process 1 (Offline)

YesNo

(1) External torque 
mutation suppression

(2) The absolute 
difference in external torque 

before and after suppression is 
less than 0.001 ?

(3) Obtain external 
torques as initial 

sample data

(5) Obtain a new 
external torque

(7) Predicting external 
torques and thresholds 

based on TSA
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external torques exceed

the thresholds ?

(9) external torques  
have been predicted ?

(10) The over-limit values 
among the

L actual values 
are replaced by 
predicted values 

(11) The original
external torques and 
the new external 
torques form new 

real-time sample data

(12) Update model 
coefficients using RLS
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No

(6) External torque 
mutation suppression

(4) Initialize model 
coefficients using
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Yes No

Source: Authors’ own work

Figure 6 Suppression operator Osp under different r and n

Source: Authors’ own work
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c, u, g, h); //Using TSA to generate dynamic
thresholds.
20: sPD/ [sPD spd];
21: result/ consecutive_values_out_of_-
dyth(C, sSP, gup, gdown); //Check whether there
are C consecutive external torque exceedan-
ces
22: if result¼¼ false && len % L¼¼ 0
23: sSP(end�L11:end)/
replace_values_out_of_Dyth sSP (end�L1 1:
end), sPD); //The exceeding limit value among
the L actual external torque values is
replaced by the predicted value.
24: sPD/[];
25: h / RLS_update (sSP, l); //Using RLS
algorithm to update model coefficients.
26: endif
27: if result¼¼ true
28: return result;
29: endif
30: endif
31: end while

3.2 Model coefficient identification based on least squares
The u-order autoregressive model AR(u) of the suppressed
external torque time series fssp(t)g is expressed in equation (11)
(Box et al., 2015):

ssp tð Þ ¼ x tð Þh1 e tð Þ

x tð Þ ¼ ssp t � 1ð Þ ssp t � 2ð Þ . . . ssp t � uð Þ� �

h ¼ a1 a2 . . . au½ �T

8>>>>><
>>>>>:

(11)

where x is the historical external torque vector, h is the
autoregressive coefficient vector and e(t) is the white noise
with a mean of 0 and variance of r2e . The total amount of
sample data is assumed to be N. When ft ¼ u 1 1, u 1 2,
. . ., Ng, equation (11) can form the following linear
equation (12):

Y ¼ X � h1Er

Y ¼ ssp u1 1ð Þ ssp u1 2ð Þ . . . ssp Nð Þ� �T
X ¼ xT u1 1ð ÞxT u1 2ð Þ . . . xT Nð Þ

� �T
Er ¼ e u11ð Þ e u1 2ð Þ . . . e Nð Þ

� �T

8>>>><
>>>>:

(12)

where Y is the external torque vector, X is the observation
matrix of the autoregressive coefficients and Er is the error
vector.
Therefore, the least squares (LS) estimate of h is given by

equation (13):

ĥLS ¼ XT �Xð Þ�1 �XT � Y (13)

3.3 Model order determination
After obtaining the parameter identification result ĥLS based on
the time series, the prediction error of the model Ê r can be
expressed as shown in equation (14):

Ê r ¼ Y �X � ĥLS (14)

An appropriate model order minimizes the error between the
prediction results of the model and the actual external torque.
The final prediction error (FPE) criterion effectively balances
errors arising from an excessive number of parameters or
missing parameters. This is achieved by determining model
order that minimizes the variance of the one-step prediction
error.
In this paper, the one-step prediction error sequence

during the offline analysis was assumed to be
f~ssp jð Þ; j ¼ fu11; u1 2; . . . ;Ngg, where ~ssp jð Þ is the one-step
prediction error of the model, and its expression is given by
equation (15):

~ssp jð Þ ¼ ssp jð Þ � ŝsp jð Þ (15)

where ssp(j) is the true value of the external torque at moment j.
ŝsp jð Þ is the predicted external torque at moment j, and its
expression is given by equation (16):

ŝsp jð Þ ¼ x jð ÞĥLS (16)

r̂2
e is the variance estimate of white noise e(t), and its expression

is shown in equation (17).

r̂2
e ¼

1
N � u

� ÊT
r � Ê r (17)

The FPE is the variance of the one-step forecast error sequence, a
function of the model order u. Therefore, it can be assumed to be
FPE(u), and its expression is shown in equation (18):

FPE uð Þ ¼ N1 u
N
� r̂2

e ¼
N1 u

N N � uð Þ � Ê
T
r � Ê r (18)

Therefore, the minimum FPE simplifies the model order and
can achieve better prediction. The appropriate model order u0
is selected according to these conditions, and the initial
coefficient ĥLS of themodel can be simultaneously obtained.

3.4 Dynamic threshold generation based on prediction
results
The different predictive targets cause the different online/
offline analysis equation.
During the online analysis, for the time serie fssp(t)g, the

value at moment t and before can be used to predict the value of
L times in the future. The suppressed external torque ssp
predicted at moment fj ¼ t 1 l, l ¼ 1,2, . . ., Lg can be assumed
as spd(l), where L is the prediction length. The one-step
prediction error npd(l) ofAR(u) is given by equation (19):

npd lð Þ ¼ ssp t1 lð Þ � ŝpd lð Þ (19)

where spd(l) is the predicted values of AR(u) at moment fj ¼ t
1 l, l¼ 1,2, . . .,Lg and L is the prediction length.
After determining the model coefficient h, the recursive form

of the predicted value spd(l) based on AR(u) is given by
equation (20):
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spd lð Þ ¼ a1 � spd l � 1ð Þ1a2 � spd l � 2ð Þ1
. . . 1au � spd l � uð Þ (20)

wherefspd(l � 1), spd(l � 2), . . ., spd(l � u)g represent the
predicted values of AR(u) at moment ft 1 l � 1, t 1 l � 2, . . .,
t 1 l � ug, respectively. If l � h < 0(h ¼ 1,2, . . ., u), then spd
(l� h) is replaced by ssp(t1 l� h).
During the online analysis, the variance of the one-step

prediction errorVar[npd(l)] ofAR(u) is given by equation (21):

Var npd lð Þ
h i

¼ E tsp t1 lð Þ � tpd lð Þ� 	2h i
(21)

In the TSA, the u-order autoregressive operator a(B) can be
defined based on equation (11), as shown in equation (22):

a Bð Þ ¼ 1� a1 � B� a2 � B2 � . . .� au � Bu

Bssp tð Þ ¼ ssp t � 1ð Þ



(22)

where B is the delay operator that defines the relationship
between the external torque at the current and previous
moments. Therefore, AR(u) shown in equation (11) can be
rewritten as equation (23):

ssp tð Þ ¼ a�1 Bð Þe tð Þ (23)

The s-order moving average model MA(s) of the external
torque time series fssp(t)g is given by equation (24):

ssp tð Þ ¼ e tð Þ1b1 � e t � 1ð Þ1b2 � e t � 2ð Þ
1 . . . 1bs � e t � sð Þ (24)

where bi(i ¼ 1,2, . . ., s) is the moving-average coefficient. b(B)
is defined as the s-order moving-average operator, as shown in
equation (25):

b Bð Þ ¼ 11b1 � B1b2 � B2 1 . . . 1bs � Bs (25)

During a stable motion process, the suppressed external torque
fluctuates smoothly around zero, which satisfies the stability
requirements of the time seriesmodel (Zhang et al., 2021).
Under the condition that the process is stationary, the

autoregressive process can be transformed into a moving
average process (Chan and Cryer, 2008). Therefore, b(B)
¼ a�1(B) and AR(u) shown in equation (11) is converted
into MA(1). Therefore, MA(1) shown in equation (24)
can be rewritten as equation (26):

ssp t1 lð Þ ¼ b Bð Þe t1 lð Þ (26)

where (t1 l) is the lthmoment in the future.
During the conversion process, the expression for bi(i ¼ 1,2,

. . .,1) can be obtained by combining equations (22) and (25),
as shown in equation (27):

b1 ¼ a1

b2 ¼ a1 � b1 1 a2

..

.

bl ¼ a1 � bl�1 1 a2 � bl�2 1 . . . 1au � bl�u
..
.

8>>>>>>><
>>>>>>>:

(27)

npd(l) of themodel can also be expressed as equation (28):

npd lð Þ ¼ e t1 lð Þ1b1 � e t1 l � 1ð Þ1 . . .

1bl�1 � e t1 1ð Þ (28)

The variance of the one-step prediction error Var[npd(l)] in
equation (21) can be rewritten as in equation (29):

Var npd lð Þ
h i

¼ 11b2
1 1b2

2 1 . . . 1b2
l�1

� 	
r2e

¼ 11
Xl�1
i¼1

b2
i

0
@

1
Ar2e

(29)

The prediction error is normal white noise with a mean of 0 and
variance ofVar[npd(l)]. Consequently, the prediction result ofAR
(u) at the lth moment in the future should also obey the normal
distribution, with a mean of spd(l) and variance of Var[npd(l)].
Therefore, when the confidence level is g, the detection threshold
at the lthmoment in the future is given by equation (30):

h lð Þ ¼ spd lð Þ6 mg
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

Xl�1
i¼1

b2
i

0
@

1
Ar̂2

e

vuuut 1c

0
BB@

1
CCA (30)

where mg
2
is the deviation coefficient and the standard normal

distribution exceeds mg
2
with a probability of g2. Parameter c was

used to adjust the thresholdmargin.

3.5 Model coefficient update based on recursive least
squares
To reduce the computational complexity of generating
dynamic thresholds based on prediction results, this paper
uses the recursive least squares (RLS) algorithm to update
the model coefficients (Song et al., 2019), as shown in
equation (31):

Kw ¼ Pw�1 � xT wð Þ l1x wð ÞPw�1 � xT wð Þ
� ��1

Pw ¼ l�1 � I �Kw � x wð Þ½ � � Pw�1
ĥw ¼ ĥw�1 1Kw � ssp wð Þ � x wð Þĥw�1

h i
8>><
>>:

(31)

whereKw is the gain matrix,Pw is the covariance matrix and l is
the forgetting factor.
If no collision is detected in the (w � 1)th detection, L-

suppressed external torques obtained in this detection cycle are
used to reconstruct ssp(w) and x(w). The RLS algorithm is then
used to update Kw, Pw and ĥw, which are used for the wth
prediction and threshold generation.

4. Experiment validation

4.1 Experiment platform
The 6DOF robot was modeled, and Joint 1 was used as an
example to analyze the collision detection data.
The robot controller communicates with a universal

collaborative robot based on the EtherCAT protocol, which
has a payload of 3 kg and arm span of 0.54m. The master
station control architecture is Igh-EtherCAT 1PREEMPT-
RT, the control cycle is 1ms, and the servo slaves are integrated
modules. The setup is shown in Figure 8(a).
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4.2 Experiment program
In this paper, we designed three trajectories: sinusoidal
trajectory in joint space, linear trajectory in Cartesian space and
arc trajectory in Cartesian space. The target motion data of
Joint 1, when the robot runs these three trajectories, are shown
in Figures 9 and 10.

To verify the performance of collision detection methods, two
main aspects need to be assessed: accuracy and detection delay.
Repeated experiments were conducted to obtain results
regarding these two aspects under hard or soft collision
conditions, comparing the proposed method with the
symmetric thresholdmethod.

4.3 Parameters setting
Setting parameters of the method in this paper according to the
process shown in Figure 7. When the robot runs the sinusoidal
trajectory for the first time, r and n can be determined after
performing in Process 1. The suppression effect is shown in
Figures 4 and 5. When the robot runs the sinusoidal trajectory
for the second time, set the order range of themodelAR(u) to u
[ [1,40]. After executing Process 2, not only N and u can be
determined, but also FPE with different orders can be
obtained, which are shown in Figure 11. Starting from the third
time the robot runs the sinusoidal trajectory, the other
parameters in this method except r, n, N and u can be
determined after executing Process 3 in a loop. For g, the
universal value is 0.05 or 0.01 (Chan and Cryer, 2008). When
repeatedly adjusting all the parameters that need to be set, the
following two conditions need to be met. First, the method will
not cause a false collision alarm. Second, the method can
accurately and sensitively detect real collisions.
It can be seen from Figure 11 that starting from the model

order u¼ 12, even if themodel order increases, the reduction in
FPE is no longer noticeable. Due to the need for selecting the
smallermodel order under small FPE, u is set to 12.
When the robot runs the sinusoidal trajectory, and no

collision occurs, the original external torque of Joint 1 and the
dynamic threshold generated by the collision detection method
based only on TSA are shown in Figure 3. The suppressed
external torque of Joint 1 and the dynamic threshold generated
by the method in this paper are shown in Figure 12. When t ¼
406 ms, the initialization condition shown in Step 2 of Process
3 in Figure 7 is met. Therefore, the external torque when t ¼
406 ms–615 ms is intercepted to construct the initial sample
data. Then, the dynamic thresholds generated by themethod in
this paper can tightly envelop the external torque, and no false
collision alarm occurs during robotmotion.

Figure 10 The target acceleration of Joint 1 when the robot runs the
test trajectory

Source: Authors’ own work

Figure 9 The target velocity of Joint 1 when the robot runs the test
trajectory

Source: Authors’ own work

Figure 11 FPE with different orders

Source: Authors’ own work

Figure 8
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The final parameter values with repeated adjustments are listed in
Tables 2 and 3. Method 1 is the collision detection method based
only onTSA, andMethod 2 is themethod proposed in this paper.
To further verify the versatility of the parameters, make the
robot run the linear trajectory or the arc trajectory without
collision. Multiple tests have found that neither the method in
this paper nor the collision detection method based only on
TSAhas produced any false collision alarm.

4.4 Collision detection experiment
The robot runs the linear trajectory and bears an artificial hard
collision when Joint 1 changes direction. The suppressed
external torque of Joint 1, the dynamic threshold generated by
the method in this paper, and the static threshold set by the
symmetric threshold method are shown in Figure 13. Besides,
the original external torque of Joint 1 and the dynamic
threshold generated by the collision detection method based
only onTSA are shown in Figure 14.
Figure 13 shows that the suppressed external torque

undergoes a rapid increase starting approximately at t ¼ 5,983
ms, breaking through the lower bound at t ¼ 6,002 ms. By t ¼
6,005 ms, the method proposed in this paper detects that the

lower bound has been exceeded for four consecutive time steps,
indicating a collision occurrence. Thus, the detection delay of the
method proposed in this paper is approximately 22ms. However,
the symmetric thresholdmethod fails to detect this hard collision.
As shown in Figure 14, when t ¼ 4,522 ms–6,030 ms,
j _qj < 0:09rad=s, the collision detection method based only on
TSA stops generating dynamic thresholds. Starting from t ¼
6,031 ms, j _qj � 0:09rad=s, the external torque for t ¼
6,031ms–6,240 ms is intercepted to reinitialize the model
coefficients and then the collision detection method based only
on TSA continues to generate dynamic thresholds. The
collision is detected at t ¼ 6,298 ms, and the detection delay of
the collision detection method based only on TSA is recorded
to be approximately 315ms.
Therefore, the method in this paper detects this hard

collision about 296ms faster than the collision detection
method based only onTSA.
To obtain hard collision statistics, we made the robot run

linear and arc trajectories multiple times and then applied 100
hard collisions when the robot ran each trajectory; that is, 200

Figure 12 The suppressed external torque of Joint 1 and the dynamic
threshold generated by the method in this paper when the robot runs
the sinusoidal trajectory without collision

Source: Authors’ own work

Table 2 The values of N, r, n and l in methods 1 and 2

Parameters N r n l

Method 1 210 – – 0.999
Method 2 210 150 16 0.999

Source: Authors’ own work

Table 3 The values of L, C, u, g and l in methods 1 and 2

Parameters L C u g c

Method 1 15 4 12 0.01 –

Method 2 15 4 12 0.01 0.02

Source: Authors’ own work

Figure 13 The suppressed external torque of Joint 1 and the dynamic
threshold generated by the method in this paper when the robot runs
the linear trajectory and bears a hard collision

Source: Authors’ own work

Figure 14 The original external torque of Joint 1 and the dynamic
threshold generated by the collision detection method based only on
TSA when the robot runs the linear trajectory and bears a hard collision

Source: Authors’ own work
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hard collisions were applied. Then, we collected and
analyzed all experiment data. In terms of accuracy, the
number of detected collisions divided by the number of real
collisions is calculated. In terms of average delay, the sum of
collision detection delay divided by the number of successful
detections is calculated. The statistical results are shown in
Table 4.
When the robot runs the arc trajectory, it comes into contact

with the foam board, as shown in Figure 8(b). At this time, the
robot has a soft collision. The experiment data is shown in
Figure 15.
From Figure 15, we know that the soft collision occurs at

approximately t ¼ 2,645 ms and the suppressed external
torque breaks through the upper bound at t ¼ 2,680 ms.
After 4ms, the exceeded upper bound leads to the collision
alarm of the method in this paper at t ¼ 2,683 ms. However,
the symmetric threshold method detects this collision at
t¼ 2,732 ms.
Obviously, in this collision detection, the delay of themethod

in this paper is about 38ms, and the delay of the symmetric
threshold method is about 87ms. That is, the method in this
paper detects the collision about 49ms faster than the
symmetric thresholdmethod.
To obtain soft collision statistics, we made the robot run

linear and arc trajectories multiple times and had 100 soft
collisions with the foam board when running each trajectory.
That is, 200 soft collisions occurred between the robot and
the foam board. The statistical method of repeated
experiments, used for hard collision cases, is also used to
analyze the results of repeated experiments for soft
collisions. The statistical results are shown in Table 5.

5. Conclusion

The method proposed in this paper calculates the external
torque using the current/torque data of the servo slave. Then, it
performs mutation suppression processing on the external
torque. Finally, it uses the TSA method to obtain several steps
of predicted response and effectively prevents mutated external
torques caused by joint reversals from false collision alarms.
Compared with the collision detection method based only on
TSA, its invalid time is less. If a collision occurs while the joint
changes direction, it saves at least one time required to initialize
the model coefficients. Three test trajectories were used to
obtain the differences between this method and the symmetric
threshold method. The comparison results show that it has
higher accuracy and lower detection delay. In addition, it meets
the real-time requirements of robot control systems and does
not rely on external sensors. Therefore, it is so superior and
practical that it can be used to improve the safety of human–
machine collaborative production.
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Appendix

When the robot runs the test trajectory, the target motion data
of the first three joints are shown in Figures A1–A3.
From Figure A4, the FPE of the three joint timing models at

different orders can be seen. For Joint 2, even if the model
order continues to increase starting from the model order u ¼
12, the reduction in FPE is no longer noticeable. For Joint 1 or
3, when the model order u � 12, the FPE decreases as the
order increases. The model order should be as small as
possible to satisfy the small FPE, and it can make the method
in this paper meet the requirements of high real-time and
convenient programming.
When the robot runs the sinusoidal trajectory, and no

collision occurs, the suppressed external torque of Joints 1 to 3
and the dynamic threshold generated by the method in this
paper are shown in Figures A5–A7.
The robot runs the linear trajectory and bears an artificial

hard collision when Joint 1 changes direction. However, there
was no significant change in the external torques of Joints 2
and 3. The original external torque of Joints 1 to 3 and the
dynamic threshold generated by the collision detection
method based only on TSA are shown in Figures A8–A10.
Besides, the suppressed external torque of Joint 1–3 and the
dynamic threshold generated by the method in this paper are
shown in Figures A11–A13.
As shown in Figure A8, when t ¼ 4,523 ms–6,024 ms,
j _qj < 0:09rad=s, the collision detection method based only on
TSA stops generating dynamic thresholds. Starting from t ¼
6,025 ms, j _qj � 0:09rad=s, the external torque for t ¼ 6,025
ms–6,234 ms is intercepted to reinitialize the model
coefficients and then the collision detection method based
only on TSA continues to generate dynamic thresholds.
However, the intercepted data is an abnormal external torque
caused by collisions, so the predicted values obtained after
reidentifying the model coefficients are also considered
outliers. Finally, the generated threshold cannot be exceeded
by the external torque caused by the collision.
Figure A11 shows that the suppressed external torque

rapidly increases approximately from t ¼ 5,894 ms and
exceeds the lower bound at t ¼ 5,925 ms. When t ¼ 5,928 ms,
the method in this paper detects that the lower bound for four
consecutive moments has been exceeded and determines that
the collision occurred. However, the static threshold is
exceeded by the suppressed external torque at t ¼ 6,145 ms.
Obviously, in this collision detection, the delay of the method
in this paper is about 34ms, and the delay of the symmetric
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Figure A3 The target motion data when the robot runs the linear trajectory

Figure A1 The target motion data when the robot runs the sinusoidal trajectory

(a) (b) (c)

Notes: (a) Joint position; (b) joint velocity; (c) joint acceleration
Source: Authors’ own work

Figure A2 The target motion data when the robot runs the sinusoidal trajectory

(a) (b) (c)

Notes: (a) Joint position; (b) joint velocity; (c) joint acceleration
Source: Authors’ own work
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Figure A4 The target motion data when the robot runs the arc trajectory

(a) (b) (c)

Notes: (a) The FPE of Joint 1’s timing model; (b) the FPE of Joint 2’s timing model; (c) the FPE 
of Joint 3’s timing model
Source: Authors’ own work

Figure A5 FPE with different orders

Source: Authors’ own work

Figure A6 The suppressed external torque of Joint 1 and the dynamic threshold generated by the method in this paper when the robot runs the
sinusoidal trajectory without collision

Source: Authors’ own work
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Figure A7 The suppressed external torque of Joint 2 and the dynamic threshold generated by the method in this paper when the robot runs the
sinusoidal trajectory without collision

Source: Authors’ own work

Figure A8 The suppressed external torque of Joint 3 and the dynamic threshold generated by the method in this paper when the robot runs the
sinusoidal trajectory without collision

Source: Authors’ own work
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Figure A10 The original external torque of Joint 2 and the dynamic threshold generated by the collision detection method based only on TSA when the
robot runs the linear trajectory and bears a hard collision

Source: Authors’ own work

Figure A9 The original external torque of Joint 1 and the dynamic threshold generated by the collision detection method based only on TSA when the
robot runs the linear trajectory and bears a hard collision

Source: Authors’ own work
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Figure A11 The original external torque of Joint 3 and the dynamic threshold generated by the collision detection method based only on TSA when the
robot runs the linear trajectory and bears a hard collision

Figure A12 The suppressed external torque of Joint 1 and the dynamic threshold generated by the method in this paper when the robot runs the linear
trajectory and bears a hard collision

Source: Authors’ own work
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Figure A13 The suppressed external torque of Joint 2 and the dynamic threshold generated by the method in this paper when the robot runs the linear
trajectory and bears a hard collision

Source: Authors’ own work

Figure A14 The suppressed external torque of Joint 3 and the dynamic threshold generated by the method in this paper when the robot runs the linear
trajectory and bears a hard collision
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threshold method is about 251ms. This information indicates
that the method in this paper detects the collision about
217ms faster than the symmetric threshold method.
When the robot runs the arc trajectory, it has a soft collision

with the foam board, as shown in Figure 8(b). Due to the
small velocity of Joint 2, the initialization condition shown in
Step (2) of Process 3 in Figure 7 has yet to be satisfied.
Therefore, the dynamic threshold related to the suppressed
external torque of Joint 2 has not been generated. For Joints 1
and 3, the suppressed external torque and related thresholds
are shown in Figures A14 and A15, respectively.
From Figure A15, it can be seen that the suppressed

external torque of Joint 3 does not exceed the dynamic
threshold generated by the method in this paper and the
static threshold set by the symmetric static threshold
method. However, Figure A14 shows that the suppressed

external torque of Joint 1 exceeds the above two thresholds.
For Joint 1, the following details can be obtained from
Figure A14. The suppressed external torque slowly
increases approximately from t ¼ 2,200 ms and exceeds the
upper bound at t ¼ 2,235 ms. After 4ms, the exceeded
upper bound leads to the collision alarm of the method in
this paper at t ¼ 2,238 ms. In addition, the static threshold
is exceeded by the suppressed external torque at t ¼ 2,264
ms. Therefore, in this collision detection, the delay of the
method in this paper is about 38ms and the delay of
the symmetric threshold method is about 64ms. That is, the
method in this paper detects the collision about 26ms faster
than the symmetric threshold method.
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Figure A15 The suppressed external torque of Joint 1 and the dynamic threshold generated by the method in this paper when the robot runs the arc
trajectory and collides with the foam board
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