To read this content please select one of the options below:

A gesture-based telemanipulation control for a robotic arm with biofeedback-based grasp

Yassine Bouteraa (CEM-Lab, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia and Digital Research Center of Sfax, Sfax, Tunisia)
Ismail Ben Abdallah (CEM-Lab, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia and Digital Research Center of Sfax, Sfax, Tunisia)

Industrial Robot

ISSN: 0143-991X

Article publication date: 21 August 2017

595

Abstract

Purpose

The idea is to exploit the natural stability and performance of the human arm during movement, execution and manipulation. The purpose of this paper is to remotely control a handling robot with a low cost but effective solution.

Design/methodology/approach

The developed approach is based on three different techniques to be able to ensure movement and pattern recognition of the operator’s arm as well as an effective control of the object manipulation task. In the first, the methodology works on the kinect-based gesture recognition of the operator’s arm. However, using only the vision-based approach for hand posture recognition cannot be the suitable solution mainly when the hand is occluded in such situations. The proposed approach supports the vision-based system by an electromyography (EMG)-based biofeedback system for posture recognition. Moreover, the novel approach appends to the vision system-based gesture control and the EMG-based posture recognition a force feedback to inform operator of the real grasping state.

Findings

The main finding is to have a robust method able to gesture-based control a robot manipulator during movement, manipulation and grasp. The proposed approach uses a real-time gesture control technique based on a kinect camera that can provide the exact position of each joint of the operator’s arm. The developed solution integrates also an EMG biofeedback and a force feedback in its control loop. In addition, the authors propose a high-friendly human-machine-interface (HMI) which allows user to control in real time a robotic arm. Robust trajectory tracking challenge has been solved by the implementation of the sliding mode controller. A fuzzy logic controller has been implemented to manage the grasping task based on the EMG signal. Experimental results have shown a high efficiency of the proposed approach.

Research limitations/implications

There are some constraints when applying the proposed method, such as the sensibility of the desired trajectory generated by the human arm even in case of random and unwanted movements. This can damage the manipulated object during the teleoperation process. In this case, such operator skills are highly required.

Practical implications

The developed control approach can be used in all applications, which require real-time human robot cooperation.

Originality/value

The main advantage of the developed approach is that it benefits at the same time of three various techniques: EMG biofeedback, vision-based system and haptic feedback. In such situation, using only vision-based approaches mainly for the hand postures recognition is not effective. Therefore, the recognition should be based on the biofeedback naturally generated by the muscles responsible of each posture. Moreover, the use of force sensor in closed-loop control scheme without operator intervention is ineffective in the special cases in which the manipulated objects vary in a wide range with different metallic characteristics. Therefore, the use of human-in-the-loop technique can imitate the natural human postures in the grasping task.

Keywords

Citation

Bouteraa, Y. and Ben Abdallah, I. (2017), "A gesture-based telemanipulation control for a robotic arm with biofeedback-based grasp", Industrial Robot, Vol. 44 No. 5, pp. 575-587. https://doi.org/10.1108/IR-12-2016-0356

Publisher

:

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles