To read this content please select one of the options below:

Tracking and following pedestrian trajectories, an approach for autonomous surveillance of critical infrastructures

Mario Andrei Garzon Oviedo (Centro de Automática y Robótica UPM-CSIC, Universidad Politécnica de Madrid, Madrid, Spain)
Antonio Barrientos (Centro de Automática y Robótica UPM-CSIC, Universidad Politécnica de Madrid, Madrid, Spain)
Jaime Del Cerro (Centro de Automática y Robótica UPM-CSIC, Universidad Politécnica de Madrid, Madrid, Spain)
Andrés Alacid (Centro de Automática y Robótica UPM-CSIC, Universidad Politécnica de Madrid, Madrid, Spain)
Efstathios Fotiadis (Centro de Automática y Robótica UPM-CSIC, Universidad Politécnica de Madrid, Madrid, Spain)
Gonzalo R. Rodríguez-Canosa (Centro de Automática y Robótica UPM-CSIC, Universidad Politécnica de Madrid, Madrid, Spain)
Bang-Chen Wang (Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan)

Industrial Robot

ISSN: 0143-991X

Article publication date: 17 August 2015

357

Abstract

Purpose

This paper aims to present a system that is fully capable of addressing the issue of detection, tracking and following pedestrians, which is a very challenging task, especially when it is considered for using in large outdoors infrastructures. Three modules, detection, tracking and following, are integrated and tested over long distances in semi-structured scenarios, where static or dynamic obstacles, including other pedestrians, can be found.

Design/methodology/approach

The detection is based on the probabilistic fusion of a laser scanner and a camera. The tracking module pairs observations with previously detected targets by using Kalman Filters and a Mahalanobis-distance. The following module allows to safely pursue the target by using a well-defined navigation scheme.

Findings

The system can track pedestrians from static position to 3.46 m/s (running). It handles occlusions, crossings or miss-detections, keeping track of the position even if the pedestrian is only detected in 55/per cent of the observations. Moreover, it autonomously selects and follows a target at a maximum speed of 1.46 m/s.

Originality/value

The main novelty of this study is the integration of the three algorithms in a fully operational system, tested in real outdoor scenarios. Furthermore, the addition of labelling to the detection algorithm allows using the full range of a single sensor while preserving the high performance of a combined detection. False-positives’ rate is reduced by handling the uncertainty level when pairing observations. The inclusion of pedestrian speed in the model speeds up and simplifies tracking process. Finally, the most suitable target is automatically selected by a scoring system.

Keywords

Acknowledgements

This work was partially supported by the Robotics and Cybernetics Group at Universidad Politécnica de Madrid (Spain), and funded under the projects: ROTOS – Multi-robot system for outdoor infrastructures protection, sponsored by Spanish Ministry of Education and Science (DPI2010 – 17,998), and ROBOCITY 2030, sponsored by the Community of Madrid (S – 0,505/DPI/000235).

Citation

Garzon Oviedo, M.A., Barrientos, A., Del Cerro, J., Alacid, A., Fotiadis, E., Rodríguez-Canosa, G.R. and Wang, B.-C. (2015), "Tracking and following pedestrian trajectories, an approach for autonomous surveillance of critical infrastructures", Industrial Robot, Vol. 42 No. 5, pp. 429-440. https://doi.org/10.1108/IR-02-2015-0037

Publisher

:

Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited

Related articles