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Abstract

Purpose — The purpose of this paper is to reduce the post-harvest loss occurring through respiration and
CO, emission produce by the selected produces, during logistics. This paper proposes a supply chain (SC)
structure for the Indian traditional agriculture SC planning model to reduce post-harvest loss and mixed
closed transportation to reduce CO, emission.

Design/methodology/approach — The Indian agriculture SC structure is modeled and solved by genetic
algorithm using a MATLAB Optimization toolbox. The respiration rate is measured by a static method.
These values are applied in an SC planning model and the post-harvest loss and its corresponding CO5
emission are estimated.

Findings — This paper proposes a supply structure for the Indian traditional agriculture SC to reduce the
post-harvest loss; the experiments measured the respiration rate to estimate the CO, emission. The mixed
closed transportation method is found to be suitable for short-purpose domestic transportation.

Research limitations/implications — The optimized supply structure leads to unemployment through
eliminating the intermediaries. Therefore, further research encourages the conversion of intermediaries into
hub instead of eliminating them.

Practical implications — This paper includes implications for the development of Indian traditional
agriculture SC by an optimized supply structure and novel transportation method for the selected agriculture
produces based on compatibility.

Originality/value — This paper identified that the agriculture produces respiration can also emit the COs.
The closed transportation method can reduce the CO, emission of produces respiration than traditional open
transportation.

Keywords Transportation, Carbon dioxide emission, Post-harvest losses, Respiration,
Supply chain planning
Paper type Research paper

Nomenclature

Sets D Demand or production
n Produces Q Supply quantity

f Farmers T Transport quantity

g Agents w Loss quantity

a Auctioneers PQ Supply percentage

/ Whole sellers PW Loss percentage

r Retail store C Carbon dioxide emission
e Customer
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Decision variables

D,
PQute
PQuta
PQua
PQusr
PQuse
PQuga
PQugl
PQugr
PQuge
PQuar
PQuar
PQuae
PQuir
PQye

P Qnre

PW,¢
PW,,
PWo,
PWnl
PW,,
Pang
PWi
PWog

Panr

Demand or production of #
produces

Supply percentage of produce 7
from farmer to agent

Supply percentage of produce 7
from farmer to auctioneer

Supply percentage of produce 7
from farmer to whole seller

Supply percentage of produce 7
from farmer to retail store

Supply percentage of produce 7
from farmer to customer

Supply percentage of produce 7
from agent to auctioneer

Supply percentage of produce 7
from agent to whole seller

Supply percentage of produce 7
from agent to retail store

Supply percentage of produce 7
from agent to customer

Supply percentage of produce 7
from auctioneer to whole seller
Supply percentage of produce 7
from auctioneer to retail store
Supply percentage of produce 7
from auctioneer to customer
Supply percentage of produce 7
from whole seller to retail store
Supply percentage of produce 7
from whole seller to customer
Supply percentage of produce 7
from retail to customer

Loss percentage of produce 7 at famer
Loss percentage of produce 7 at agent
Loss percentage of produce 7 at
auctioneer

Loss percentage of produce 7 at
whole seller

Loss percentage of produce 7 at
retail store

Loss percentage of produce 7 during
transport from farmer to agent
Loss percentage of produce 7 during
transport from farmer to auctioneer
Loss percentage of produce 7 during
transport from farmer to whole seller
Loss percentage of produce # during
transport from farmer to retail store

PWote Loss percentage of produce 7 during
transport from farmer to customer

PWiga Loss percentage of produce # during
transport from agent to auctioneer

PWy Loss percentage of produce 7 during
transport from agent to whole seller

PWigr Loss percentage of produce # during
transport from agent to retail store

PWioge Loss percentage of produce 7 during
transport from agent to customer

PWoa Loss percentage of produce #
during transport from auctioneer
to whole seller

PW.oar Loss percentage of produce 7 during
transport from auctioneer to
retail store

PW e Loss percentage of produce 7 during
transport from auctioneer to
customer

PWo Loss percentage of produce 7 during
transport from whole seller to retail
store

PWoie Loss percentage of produce # during
transport from whole seller to
customer

C, Carbon dioxide emission rate of
produce 7

Other parameters

Qnf Capacity of farmer

@ng Capacity of agent

Qrna Capacity of auctioneer

Qu Capacity of whole seller

Qe Capacity of retail

Qnte Supply quantity of produce # from
farmer to agent

Quta Supply quantity of produce 7 from
farmer to auctioneer

Qunt Supply quantity of produce 7 from
farmer to whole seller

Qnt Supply quantity of produce # from
farmer to retail store

Qnfe Supply quantity of produce # from
farmer to customer

@nga Supply quantity of produce » from
agent to auctioneer

@ngl Supply quantity of produce 7 from
agent to whole seller

Qngr Supply quantity of produce 7 from

agent to retail store



@nge
Qna
Qnar
@nac
Qnir
Qnte
Qnre
Qne

Supply quantity of produce # from
agent to customer

Supply quantity of produce # from
auctioneer to whole seller

Supply quantity of produce # from
auctioneer to retail store

Supply quantity of produce 7 from
auctioneer to customer

Supply quantity of produce # from
whole seller to retail store

Supply quantity of produce # from
whole seller to customer

Supply quantity of produce # from
retail to customer

Customer

Transport quantity of produce n

Tnfg
Tnfa
Tnﬂ
Tnfr
Tnfe
Tnga
Tngl
Togr
Tnge
Tnal
Tl’]al’
Tnae
Tnlr

Tnle

Transport quantity of produce 7
from farmer to agent

Transport quantity of produce 7
from farmer to auctioneer
Transport quantity of produce 7
from farmer to whole seller
Transport quantity of produce n
from farmer to retail store
Transport quantity of produce n
from farmer to customer
Transport quantity of produce n
from agent to auctioneer
Transport quantity of produce 7
from agent to whole seller
Transport quantity of produce 7
from agent to retail store
Transport quantity of produce 7z
from agent to customer
Transport quantity of produce 7
from auctioneer to whole seller
Transport quantity of produce 7
from auctioneer to retail store
Transport quantity of produce 7
from auctioneer to customer
Transport quantity of produce 7
from whole seller to retail store
Transport quantity of produce 7
from whole seller to customer

Wastage quantity of produce n

an
Wg
Wha

Loss quantity of produce 7 at famer
Loss quantity of produce # at agent

Loss quantity of produce » at
auctioneer

Wi

War

Whtg
Wata
Wan

Wate
Wate
Whga
Whgl
Wher
Wige
What
Whar
Whae
Wt

Wnle

Loss quantity of produce 7 at
whole seller

Loss quantity of produce # at
retail store

Loss of produce 7 during transport
from farmer to agent

Loss of produce 7 during transport
from farmer to auctioneer

Loss of produce # during transport
from farmer to whole seller

Loss of produce 7 during transport
from farmer to retail store

Loss of produce » during transport
from farmer to customer

Loss of produce » during transport
from agent to auctioneer

Loss of produce 7 during transport
from agent to whole seller

Loss of produce 7 during transport
from agent to retail store

Loss of produce 7 during transport
from agent to customer

Loss of produce 7 during transport
from auctioneer to whole seller
Loss of produce 7 during transport
from auctioneer to retail store

Loss of produce 7 during transport
from auctioneer to customer

Loss of produce # during transport
from whole seller to retail store
Loss of produce 7 during transport
from whole seller to customer

Carbon Dioxide Emission CO-

Cnf

Cng

Carbon dioxide emission of produce
n at farmer

Carbon dioxide emission of produce
n at agent

Carbon dioxide emission of produce
7 at auctioneer

Carbon dioxide emission of produce
n at whole seller

Carbon dioxide emission of produce
7 at retail

Carbon dioxide emission of produce
n at agent

Carbon dioxide emission of produce
n from farmer to auctioneer

Carbon dioxide emission of produce
n from farmer to whole seller
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Coir Carbon dioxide emission of produce CWys, Loss Carbon dioxide emission of

n from farmer to retail store produce 7 at agent
Cote Carbon dioxide emission of produce CW,g, Loss Carbon dioxide emission of

n from farmer to customer produce # from Farmer to
Coga Carbon dioxide emission of produce auctioneer

n from agent to auctioneer CWon Loss Carbon dioxide emission of
Cogl Carbon dioxide emission of produce produce 7 from farmer to whole

n from agent to whole seller seller
Cogr Carbon dioxide emission of produce CW . Loss Carbon dioxide emission of

n from agent to retail store produce 7 from farmer to retail store
Cage Carbon dioxide emission of produce CWg Loss Carbon dioxide emission of

n from agent to customer produce 7 from farmer to customer
Chal Carbon dioxide emission of produce CWoyg, Loss Carbon dioxide emission of

n from auctioneer to whole seller produce # from agent to auctioneer
Coar Carbon dioxide emission of produce CW,y Loss Carbon dioxide emission of

n from auctioneer to retail store produce 7 from agent to whole seller
Chae Carbon dioxide emission of produce CW,g, Loss Carbon dioxide emission of

n from auctioneer to customer produce # from agent to retail store
Carr Carbon dioxide emission of produce CW,,  Loss Carbon dioxide emission of

7 from whole seller to retail store produce # from agent to customer
Cale Carbon dioxide emission of produce C,u Carbon dioxide emission of produce

n from whole seller to customer n from auctioneer to whole seller
Care Carbon dioxide emission of produce Car Carbon dioxide emission of produce

n from retail to customer n from auctioneer to retail store
Carbon dioxide Emission CO» produced by loss Coae Carbon leX.Ide emission of produce
CWoe Loss Carbon dioxide emission of n from auctioneer to customer

produce 7 at farmer CWorr Loss Carbon dioxide emission of .
CW,g Loss Carbon dioxide emission of produce 7 from whole seller to retail

produce 7 at agent store o o
CWoa Loss Carbon dioxide emission of ~ CWhle Loss Carbon dioxide emission of

produce 7 at auctioneer produce 7 from whole seller to
CW,y Loss Carbon dioxide emission of customer o o

produce 7 at whole seller CWoe Loss Carbon d10x1d§ emission of
CW,r Loss Carbon dioxide emission of produce 7 from retail to customer

produce # at retail

1. Introduction

As the population increases, agriculture production and supply must increase to meet the
increasing demand (Alexandratos and Bruinsma, 2012). In a supply chain (SC), increasing
demand can be satisfied only by efficient logistics (Lummus et «l, 2001).
Hence, agriculture commodity has to be transported efficiently from farmers to the
consuming regions, where agriculture supply chain management (ASCM) plays a
prominent role (Ahumada and Villalobos, 2009; Etemadnia et al, 2015). Traditionally,
ASCM is viewed as a process where the agricultural produces are converted into
value-added final products, and then delivered to the consumer and this process involves
harvesting and consumption of the natural resources (Beamon, 1999). It is consequential
to note that environmental sustainability and food security have become important issues
to business practice (Kumar and Chandrakar, 2012).



The strategy of improving environmental quality reduces poverty, and brings about
economic growth, with resultant improvements in health (Bhateja et al, 2011; Jang and
Klein, 2011). According to Syahruddin and Kalchschmidt (2011), in recent years, several
measures have been made toward improving environmental hazards in ASCM in the
developed countries, with the developing countries like India are yet to initiate this process.
The Indian ASCM ignores some of the important issues like environmental damage, food
safety, social and sustainability issues, which are driven by external factors such as
customer and market demand (Syahruddin and Kalchschmidt, 2011). The environmental
issues of ASCM are caused by the post-harvest losses (PHL) occurring at various levels of
the SC (Hodges et al., 2011).

If the PHL are reduced, then the cost of agriculture produces will reduce instantly (Murthy
et al, 2007). Around 30-40 percent of total produce gets wasted in India due to improper ASCM
(Negi and Anand, 2015b). These PHL cannot be reduced without improving the infrastructure
and awareness of the intermediaries in the ASCM on PHL (Parfitt ef al, 2010; Ratinger, 2013).
Therefore, it is most important to plan the supply and estimate PHL quantity at every level in
the agricultural SC. The supply and PHL quantity of Indian traditional ASCM can be
optimized and planned by mathematical modeling (Mula et al, 2010).

The mathematical model of Indian traditional ASCM is complicated, because intermediaries
increased the echelon of traditional ASCM (Dalei and Dutta, 2015). Figure 1 shows the
self-descriptive way of traditional ASCM that concise of many intermediaries and direct
market. The purpose of this paper is to construct an optimum mathematical planning model for
complex Indian traditional ASCM, and adopt a meta-heuristic genetic algorithm (GA) to solve
this model. The objectives of this paper are to optimize the supply structure to reduce PHL and
modify the transportation method to reduce the environmental impacts.

2. Literature review

In the recent years, there has been an increased attention in using GA to solve single- and
multi-objective problems in production and operations management (Dimopoulos and
Zalzala, 2000). GA is chosen as it is the most popular meta-heuristic algorithm within the
context of SC planning and optimization (Fahimnia ef af, In press). This paper uses the GA as
a meta-heuristic algorithm to optimize the supply structure of the Indian ASCM to reduce the
PHL. According to Shukla and Jharkharia (2013), very little attention is given to the reduction
of PHL. They listed various factors affecting ASCM as globalization, technological
innovations, trade agreements, consumer awareness, environmental concerns, etc. In addition
to that the PHL transpires due to many intermediaries. The PHL occur in the ASCM because
they relate to wasteful behavior of intermediaries, retailers and customers (Parfitt et al, 2010;
Gustavsson et al, 2011).

Elimination of intermediaries from the ASCM will improve its efficiency (Jansen, 1996).
However, few authors (Klerkx and Leeuwis, 2008; Amrutlal, 2010) suggested to integrate
the intermediaries in ASCM to optimize their supply structure. Therefore, in this research
paper, intermediaries are retained for SC modeling for optimizing the SC while estimating
the PHL and its CO5, emission. Since recent years, many researchers have been focusing on
environmental sustainability (Vorst et al, 2010) because the agriculture sector is
contributing 14 percent in total toward global CO, emissions (UNEP, 2012); if the
agriculture sector’s emission gets reduced, consequently, the overall emission will reduce
(Blok et al., 2001). The CO, emission sources in the agriculture sector are direct emission
and indirect emission (Schils et al., 2005).

The emission of CO, by the produces or land use is direct emission and the emission of
CO,, by the fuel burnt during transportation is indirect emission (Schils et al.,, 2005). Indirect
emission by the fuel burnt during transportation has attracted attention from many
agriculture and automobile researchers. The less concentrated area in indirect emission
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Figure 1.
Indian agriculture
marketing

Customers

includes respiration releases of CO, after produces have been harvested (Blok et al, 2001).
Proper packing can maintain the quality of the produce as the CO5 generated while packing
is at an elevated level (Kader and Rolle, 2004). All agriculture produces should be properly
packed before transportation.

2.1 Indian agriculture SC
The Indian ASCM has become more complex and improper due to the imbalance between
demand and supply (Joshi et al, 2009). This complexity of ASCM and improper handling by
the intermediaries plays a major role in ASCM and its PHL (Negi and Anand, 2015b).
However, Indian traditional ASCM has more potential to satisfy the demand than a chain
store SC; hence, it needs more research concentration (Bala, 2014). Figure 1 shows that
Indian ASCM consists of two SCs: first is private retailers following the chain store SC, and
second is traditional ASCM which includes many intermediaries like agents, auctioneers,
wholesalers and retailers (Gigler et al, 2002; Negi and Anand, 2015a, b).

The produces, which are produced by the Indian farmers, take two possible routes,
namely, the agents and auctioneers, and from there, produces move to customer through



whole sellers and retailers. This method is called traditional ASCM. Alternatively,
depending on the quantity and cost, the produces may change the route to reach the
customer directly through whole sellers and retailers in traditional ASCM (Negi and
Anand, 2015a, b). The most efficient and less-practiced route is the direct market. In direct
market, the produces reach the customer directly without any intermediaries like agents,
auctioneers, whole sellers and retailers (Rajkumar and Jacob, 2010). The Indian farmers
mostly practice traditional ASCM, which supply the agriculture products to the consumer
through the intermediaries (Bahinipati, 2014).

The past research works clearly indicate the need for planning and optimizing the Indian
ASCM. Since Indian agriculture transportation transports the produces through open
craters (FAQO, 2005; Vigneault et al, 2009; Bhushan, 2013), it leads to continuous emission of
CO, through respiration of the agricultural produces (Snowden, 2010). Therefore, this paper
identifies an alternate transportation method to reduce the CO, emission and investigates
PHL from field to plate of selected agriculture produces.

3. Adopted approach

The Indian traditional ASCM is modeled by considering all intermediaries and assumes
PHL in various percentages. The percentages of PHL of different produces were estimated
by many researchers such as Gangwar ef al. (2007) and Sharma and Singh (2011). Those
PHL percentages lie in between 10 and 50 percent. Therefore, the assumed percentage of
losses at the first level of ASCM is 10 percent, and ends at 50 percent with an increment of 10
percent, because 10 is the lowest percentage of loss and 50 is the highest percentage of loss.
In this paper, loss is nothing but non-consumed produces, which is a previous stage of
degradation. According to respiration the degraded and non-consumed produces are
different. Respiration was measured through the experimental setup to calculate the CO,
emission as shown in Figure 3.

The CO, emitted by agricultural produces through the respiration was estimated for
those PHL and also the CO, emissions of all undamaged supplied products were measured.
The respiration of selected agriculture produces was measured in the non-degraded
condition of the produce. The agricultural produces like potato and tomato were purposively
selected based on their compatibility with ASCM and availability. The CO, evolutions of
potato and tomato were measured using the respiration to estimate the respiration rate.
The CO, evolution is applied to the overall production of respective produces to measure the
overall CO, emission. These CO, evolutions were applied to the PHL quantity to measure its
CO, emission. Therefore, this research paper formulates a mathematical model to plan the
supply, estimate PHL and CO, emission for various optimized supplies.

3.1 Loss and emission source proposed model
Many PHL are available in this traditional ASCM like packing and transportation (Gigler ef al,
2002; Sharma and Singh, 2011); these PHL were intended by a mathematical model along with
overall losses and loss of CO, emission. Figure 2 classifies Indian traditional ASCM into
five different SC models and shows the PHL and CO, emission sources at every level. PHL are
shown in Figure 2 as loss, which happens during transportation. In addition, there are two CO,
emission sources considered in this paper which are unconsumed and fresh produces emission.
Therefore, the PHL and CO, emissions are high in ASCM due to the presence of multiple
supply stages or the presence of intermediaries such as agents, auctioneers, whole sellers,
and retailers. The produces are transported from farmer to customer through these
intermediaries by open transportation in trucks (Ashby, 2008; Rajkumar and Jacob, 2010).
As proper loading and unloading is not followed in the open truck transportation
(Vigneault et al, 2009), it leads to exploitation of farmers by the intermediaries (Ashby, 2008;
Rajkumar and Jacob, 2010).
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Figure 2.
Different traditional
agriculture supply
chain
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The agricultural produces respire continuously during open truck transportation.
The produces start respiration immediately after harvest until it is consumed or
degraded. The static and closed method is used to measure the CO, emission released by
produces during respiration (Yahia, 2009). Experiments were conducted individually and
also mixed together to know how much CO, is produced. During this experiment, the
produces are experimented in a closed container and respired for six hours.

3.2 Experimental setup

The agriculture produces are selected based on local production and are grouped based on
their storage properties. The O, consumption and CO, evolution are measured by the static
method in atmospheric temperature without any external aid. The static method can
measure the respiration in a closed container (Fonseca et al., 2002). The respiration of the
selected agriculture produces is measured by gas sensors for the sample time of one hour
and six hours. In this static method, the relative humidity of the selected produces for the
reason of respiration produces water droplets after six hours; therefore, the experiments
were conducted for six hours.

The sensors used in this experiment are the Vernier O, sensor in the range of
0-27 percent (0-270 ppt), the Vernier CO, sensor in the low range: 0 to 10,000 ppm and high
range: 0 to 100,000 ppm, the Vernier relative humidity sensor in the range of
0 to 95 percent, and the f-type thermocouple in the range of 0 to 350°C. These sensors
were interfaced with a computer through national instrument ELVIS II. Figure 3 shows
the experimental setup. The O, sensor value changes with respect to the relative humidity
value; therefore, the relative humidity was measured for O, sensor. Two produces,
namely, potato and tomato were selected to measure their respiration levels as
individual produces as well as mixed quantities were studied for their O, consumption
and COs evolution.

Initially, the individual agriculture produces’ respiration rates were measured by the
experimental setup as shown in Figure 3. In addition, two vegetables were combined and
measured by this experimental setup. The agricultural produces like potato, tomato,
and their combinations were experimented in the weight of 100, 200, and 300 g. Mixing of
samples was based on produce selection and their compatibility. This comparative study of
individual and mixed produces shows the CO, evolution variations along with O,
consumption. Through this way, the CO, respiration rate was averaged and measured.
Subsequently, those values were applied in the mathematical model to estimate the supply,
transport loss quantity and CO, emission.



Data acquisition
system

Carbon dioxide Oxygen
Sensor sensor

Computer Relative humidity sensor

Thermocouple

Closed container

3.3 Model description

An SC planning model is used here to optimize the supply between each stage and estimate
the loss and CO, emission. This planning model considered that the demand D,, of the nth
produce is equal to the farmer’s production. Succeedingly, @, is the capacity or supply of
any stage of the nth produce. Likewise, T,,, W, and C, are the transport, loss quantity and
CO,, emission of the zth produce of the concerned stage, respectively. The decision variables
are the percentage of supply (PQ,,) and loss (PW,,) quantities, which decide the efficiency of
the whole SC in this model. The decision variables are in percentage so that they can
estimate the value from the production quantity.

These decision variables are used to calculate the quantity supply and quantity loss at
each stage. Equation (1) can estimate the loss at the farmer’s end by applying the farmer’s
loss percentage PW,;, and then the supply capacity of the farmers can be measured by
Equation (2). Likewise, the supply capacity of agents, auctioneers, whole sellers and retailers
can be measured by Equations (3)-(6), respectively. Equations (7) to (21) measure the supply
quantities of each stage to other consequent stages. The total supply quantities were
estimated by summing all the supply quantities; likewise, the total loss quantities
were estimated by adding all the loss quantities. The loss quantities can be measured by
Equations (36) to (53). If the loss is eliminated from the previous supply quantity, then that is
nothing but the transported quantity (7;,).

Equations (22) to (35) calculate transported quantities between each stage.
The transported quantities were used to measure the total quantity transported and total
transportation losses. The total loss and supply quantities are shown in (54) and (55),
respectively. The total CO, consumption of loss quantities can be measured by Equation (56).
The total supply and loss quantities were large in size; therefore, those large equations were
solved algebraically by the MATLAB software package. The supply quantity needs to be
optimized to gain higher supply and lower losses. The supply quantity is optimized
through GA. Equations (57) to (69) are constraints for the models. In that first five equations
are nonlinear constraints. Second five equations are linear constraints and remaining
equations are upper and lower bound.

The first five nonlinear equations are the sum of all the supply quantities, which are
supplied from the farmer to other stages and should be equal to the total demand or
production. In the second five equations, the quantities which are supplied from the farmer
to other stages should be greater than supply quantities of each stage to other stages.

Indian
traditional
agriculture
supply chain

1825

Figure 3.
Experimental setup
to study CO,




IMDS
1179

1826

Table 1.
Supply structures

The supply quantity which is supplied by the retailer to the customer should be less than
the sum of supply quantities of the farmer to the retailer and other stages to the customer.
In linear equations, first is the sum of all the percentages of supply quantities supplied from
the farmer to other stages which should be equal to 100; likewise, the remaining percentage
of supply quantities, supplied from each stage to other stages, should be less than or equal
to 100. Finally, the bound constraints should be defined for all the objectives while solving
an objective using GA.

There are three bound constraints: loss, supply and CO, emission. These three
constraints should be greater than 0; likewise, the loss should be less than demand, the
supply should be less than or equal to demand, and CO5 emission should be less than the
overall emission. Based on the above constraints, the supply structure of Indian TASCM is
optimized. These optimized supply structures are shown in Table I. The loss, supply and
CO, emission quantities are estimated by Equations (54)-(56), respectively, based on the
optimized supply structure:

Wit = Dy x PWiy @

Qnt = Dy — Wit ¥

@ng = Tatg—Wig ®)

@na = [Tnta+ Toga] = Wha “)

Qu = [Toa+ Togi+ Tra] — Wi ©)
Qur = [Totr+ Toge + Trar + Tote| — W ©)
Qntg = @nf X PQugg @

Qnfa = @nf X PQuga ®

Supply structures

Type-1in % Type-2 in % Type-3in %

PQnig 20 20 0
PQuta 20 20 0
PQun 20 20 0
PQusr 20 20 0
PQute 20 20 100
PQga 25 0 0
PQugi 25 0 0

et 25 0 0
PQnge 25 100 0
PQuar 30 0 0
PQuar 30 0 0
PQpae 40 100 0

e 50 0 0
PQuie 50 0 0
PQure 100 100 0




Qnﬂ = an X PQnﬂ
Qnfr = Qnr X PQugyr

@nfe = @nr X PQue
Qnga = Qng X PQuga
@ngl = @ng X PQugl
Qngr = Qng X PQugr
@nge = @ng X PQuge
Qnal = @na X PQual
Qnar = Qna X PQuar
Qnae = Qna X PQuae
Qnir = @ x PQuyr
Qnle = @n < PQue
Qure = Qur X PQure
Thtg = @nig— Whig
Tota = @nta—Wta
Ton = @un—Wan
Tty = Quir—Wsr
Tofe = Qnfe—Wte
Thga = Qnga—Whga
Thgl = Ongl—Whgl
Togr = Qngr—Wgr

Tnge = Qnge_ane

10)
()
12)
13)
(14)
(15)
16)
a7
18)
19)
(20)
1)
22)
23)
24)
25)
(26)
27)
28)
(29)

(30)
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Tnal = Qnal_Wnal

Thar = @nar—War
Thae = @nae—Whae
Tor = Quir— W
Thie = @nie—Whie
Wag = Thntg x PWpg
Wia = [Tota+ Tnga) x PWna
Wi = [Tun+ Tug+ Tna] x PWy
Wi = [Totr+ Togr+ Troar+ Tuie| x PWoy
Whig = Qnte X PWye
Wita = @nta X PWige
Wan = @na x PWig
Wite = @nir X PWoge
Wte = @nfe X PWyge
Whga = @nga X PWnga
Whg = @ngl X PWyg
Whgr = @ngr X PWigr
Wige = @nge X PWge
What = @Qnat xPWipg
Whar = Qnar X PWg

Whae = @nae X PWpae

31)

32)

33)

(34)

(35)

(36)

37)

(38)

(39)

(40)

(41)

42)

43)

(44)

(45)

(46)

47)

(48)

(49)

(50)

1)



Wnlr = inr X Panlr (52)

Whte = @ule X PWye ©3)
Objective 1 — total loss:

min f(W) = Z; an—l—;; an+;; Wna+;ZWnl+;Z W,
+;;;ang+;zf:§a: W oga + ;;;Wnﬂ
*ETTVe LT IV
+ ;%:Z:anw Z;ngﬁ Z;ZWg
+ETE e ST e ST e
+;;ZWM+ ;;;Wmﬁ ;Z;Wm (54)

Objective 2 — total supply:

max f(Q) = ;;Qﬁ;zg:QnngEn:za:Qnﬁ;El:Qﬁ;ZQm
+;;;Qﬂg+;;gj%+ ;;Z@ﬁ ;;ZQ““
*EE R T e Y 00 ST
+ ;zgjzej@ngﬁ ;;Z;:Q““ ZZZQ+ ZZZQ
+;Z:Z:an+ ;;Z:Qmﬁ- ;ZZ:QM (55)

Objective 3 — total carbon dioxide produced by loss:
min f(CW) =D > CWor+> > CWog+> > CWoa Y Y CWy
nof n g n a n I
+ZZCWm+ZZchnfg‘l‘zzzcwnfa
n r n f g n f a
A DN WY DD W+ YD CWige
nof nof r nof e

222 CWarat D DD CWog+) D > CWag
n g a n g ! n g [

20D Wt D0 D CWaa > D D CWowr
n g e n a / n a 7
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+ Z Z chnae"i'z Z chnlr+z Z chnle
n a e n ! 7 n ! e

+D D> W
n r e
Nonlinear constraints:

@nfg + Onfa + @nst + Qs + @nse = Dy,
@nga + Ongl + @ngr + Onge < Qnfe
Qnal + @nar + Onae < Qnfa+ Qnga
Qnir + Qnle < Qntt + @ngl + @nal

Qnre < anr + Qnge + Qnae + ine

Linear constraints:

PQuse +PQuta + PQust + PQusr + PQue = 100
PQuga +PQug + PQugr + PQuge < 100
PQua +PQuar +PQuae <100
PQuir +PQue <100

PQure <100
Bound:
0< W<D,

0< @<D,

0<CW <D, xC,

34 Proposed GA

(56)

(57)

(58)

(59)

(60)

(61)

62)
63)
64)
(65)

(66)

©67)
68)

(69)

Type 3 supply structure is optimized by GA. The GA solves the mathematical model using the
MATLAB R2014a optimization tool box. The traditional optimization and search algorithms
are not good enough to solve large SC problems (Kannan et al, 2010). So this research paper
chooses the GA because this is inspired by biological evolution and works based on survival
of the fittest. GA is the stochastic search algorithm that works iteratively on a population,
carrying out a search directed by the fitness of each solution (Xie and Dong, 2002).
This GA is more flexible with objective function and not depends on any priori hypotheses
(Naso et al, 2007). In this paper, the optimization toolbox is used to run the GA solver.



There are 13 decision variables in this modeling; the GA uses the binary decoding to proceed
with the problem.

There are different terms that are specified for the purpose of optimization.
Before specifying certain values for each of these terms, all of them were tested with
regard to the accuracy of the results. The selected and used MATLAB prescribed terms in
the GA toolbox for optimization are shown in the flow chart. The GA starts with defining
objective function and constraints as described in Section 3.3. Then double vector
population and constraint-dependent creation function were applied for constraints.
The initial population, scores and ranges are not required to change from default values,
because the feasible solution is obtained from default values. Rank scaling is applied,
because ranking automatically introduces a uniform scaling across the population and also
rank fitness scaling removes the effect of the spread of the raw scores.

Stochastic uniform reproduction is applied as a selection function, and then the default
elite count and crossover fraction is applied in reproduction. The constraint-dependent
crossover and mutation is applied, in addition to the optimization toolbox, which applies
adaptive feasible mutation, when constraints were present; likewise. if linear constraints are
present, then the optimization toolbox chooses intermediate crossover function. In terms of
migration, the forward direction was applied with default fraction and interval
This optimization toolbox ends when the optimized supply structure is obtained; it is
described in Section 4.1 (Figure 4).

4. Results and discussions

The mathematical model is used to plan an optimized supply structure to estimate loss and
CO, emission of Indian traditional ASCM. The previous researchers such as Gangwar et al.
(2007) and Sharma and Singh (2011) calculated PHL for every level of ASCM, but they did

I Define Objective function and constraints | [ Output optimized supply method |

Check
Min f(W)
Max f(Q)

Min f(CW)

. Stopping criteria
Create Tnitial random population pping

I Generations: Default I

Population:

Population type: double vector with populations size =default 1‘
Creation function: constraints dependent o
Initial population: default Migration

Initial scores: default .
Direction: Forward,

Fraction: Default (0.2),
Interval: Default (20)

Initial range: default

Q
= &
7} 8
3 S
E l Calculation of supply percentage I 1 g
2 - g
2 Crossover function ]
5 o
2 3
5 2
o

Fitness scaling: T
Scaling function: rank
Mutation function
! o epens |
Selection function T

l Stochastic Uniform Reproduction I Reproduction

Elite count: default (0.05x Population size),
Crossover fraction: default (0.8)

|
|
|
|
|
|
|
|
|
| Evaluation of average fitness function I Constraints Dependent I
|
|
|
|
|
|
|
|
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Table II.

CO, respiration rate
and CO, produced
by respiration

not consider the environmental impacts. Therefore, the CO5 emissions of supply and loss
were estimated through the respiration rate, which is measured for open and closed
transportation of the selected produces such as potato, tomato and its combination.

4.1 Optimization of supply

This model is specifically used to plan the supply, estimate loss and CO, emission by
demand or production of produces. The 13 nomenclature and 36 decision variables are
described in the topic of nomenclature. The decision variables are nothing but supply
quantity percentage and loss quantity percentage at each of the stages. These percentages
are the input for mathematical modeling to estimate the loss and CO, emissions.
The percentage of supply quantities of each stage like farmers to an agent is described in
nomenclature and the values are shown in first column of Table 1. The type 1, type 2 and
type 3 columns are three different supply structures which are optimized.

The supply quantities are optimized through GA using the MATLAB R2014a
optimization toolbox. Table I displays three optimized values which are called optimized
supply structures. These supply structures are optimized to supply the agriculture produces
to the customer through various stages. Among various supply structures, type 3 is the
most optimized supply structure because this eliminates all the intermediaries. According to
Neven et al (2009) cooperative market is most efficient than other direct market or chain
store market. Therefore, the supply structure type 1 is the most feasible option, because this
method includes all the stages of ASCM. Succeeding, the supply structure type 2 supplies
produces from the farmer to customer through other intermediaries directly, therefore this
eliminates the supply between intermediaries.

These supply structures are applied in the mathematical model to calculate PHL and CO,
emission. The PHL was measured by assuming loss percentage and CO, emissions were
measured by measuring the respiration rate of produces and their group. The quantities of
selected agriculture produces were identified and are shown in Table II. The agriculture
produces have to be supplied to the customers to satisfy their demand without affecting
the environment.

4.2 Calculation of overall CO5 emission

The respiration rates of COs of open and closed transportation were measured and shown in
Table II. It comprises a year, production quantity of produces, as well as CO, emission
produced by respiration of agriculture produces during open and closed transportation.
Succeeding that, the respiration rate of CO, was applied to quantity of production to

Production Closed Open Difference
Respiration Respiration
rate ml CO, ml rate ml CO; ml

Produces Year In Kg COo/hr. COq/hr. COq/hr. COo/hr. ml COo/hr.
Potato 2010-2011 42,339,000 2.33 98,527,927 6.02 592,730,222 494,202,295
2011-2012 41,483,000 96,535,912 580,746,541 484,210,629

2012-2013 45,344,000 105,520,922 634,799,102 529,278,180

Tomato 2010-2011 16,826,000 5.24 88,188,945 18.21 1,605,948,799 1,517,759,854
2011-2012 18,653,000 97,764,673 1,780,325,862 1,682,561,189

2012-2013 18,227,000 95,531,909 1,739,666,514 1,644,134,605

Potato and  2010-2011 59,165,000 413 244,107,434 12.21 2,981,617,987 2,737,510,553
Tomato 2011-2012 60,136,000 248,113,660 3,030,551,496 2,782,437,837
2012-2013 63,571,000 262,286,043 3,203,658,194 2,941,372,152




estimate the overall CO; emission. Both potato and tomato and their combination of
respiration vary in open and closed transportation. The respiration rate is highly reduced,
when potato and tomato are combined together in a closed transportation.

As referred to in Table II, potato has a rate of 6.02 ml CO,/hr, tomato and its combination
have respiration rates of 18.21ml COo/hr and 12.21 ml COy/hr, respectively, in open
transportation. If the produces are transported in a closed container, then potato has a rate
of 2.33 ml COy/hr, and tomato and its combination have respiration rates of 5.24 ml COo/hr
and 4.13ml COy/hr, respectively. The potato has the lowest respiration rate, and the
transportation method of potato, tomato and their combination is shown in Table IL

However, the respiration rate changes in the closed transportation according to the
headspace; if the headspace decreases, then the respiration rate also decreases. In comparison,
the potato has a less respiration rate than tomato. However, both have reduced respiration in
the closed transportation. Complete production of CO, emission is shown in Table II, which is
estimated by applying the respiration rates to the overall production of agriculture production
during past three years of 2014, because this work is conducted during the year of 2014. Thus,
the overall CO, emission of Indian traditional ASCM will increase.

4.3 Calculation of loss and CO emission

The CO, emission is not only produced by the transported agricultural produces but also
emitted during PHL. Therefore, supply and loss are major sources of CO, emissions, which
will increase the environmental impacts of Indian traditional ASCM. Table III comprises
the loss of all three combinations such as potato, tomato and mixture of both, with total
PHL in terms of kg for an assumed percentage of PHL for each stage, as well as supply
structures and exact production of each year. If the traditional ASCM adopts type 1
supply structure, it will have 50 percent of PHL, leaving highest quantity of loss;
otherwise if it adopts a most optimized supply structure type 3 with 10 percent of PHL, it
will be the lowest loss. The comparison of type 1 and type 3 reveals that the total loss
reduced to 15 percent in all percentage of PHL.

The PHL percentages of each stage and supply structure are interlinked with each other.
The optimized supply structure reduces the loss and CO, emission, but the transportation
method reduces CO, emission only. Tables IV and V comprise the CO; emission of loss
produces during closed and open transportation, respectively. Table IV shows the significance
of closed transportation by comparing CO, emission produced by selected produce respiration
along with an assumed percentage of PHL and optimized supply structures.

Table IV clarifies that the PHL of tomato in supply structure type 3 has lowest CO,
emission, which is 5, 10, 15, 18, and 22 percent with respect to each percentage of PHL.
The supply structure type 3 of potato has CO, emission of 7, 14, 20 25, and 29 percent with
respect to each percentage of PHL, which is slightly higher than tomato. The supply
structure type 3 of mixed produces has CO, emission of 6, 12, 17, 22, and 25 percent with
respect to each percentage of PHL. Therefore, the tomato has lowest CO, than both, but the
potato CO5 emission can be reduced by mixing both. The open transportation CO, emission
is estimated and shown in Table V to compare with closed transportation.

Table V clarifies the differentiation of CO, emission of open transportations of selected
produces compared with the PHL percentage and optimized supply structures, because this
open transportation is more traditional than the existing transportation method. Table V
clarifies that the CO, emission of open transportation is much higher. The potato has
90 percent of CO, emission in supply structure type 1with highest loss percentage. This
table is used here to estimate the current CO, emission of selected produces for five different
loss and three different supply structures. In Table V, it is estimated to compare the closed
transportation with traditional open transportation. The difference between closed and
traditional open transportation is shown in Table V1.
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Table VI depicts the differentiation of CO, emission of open and closed transportation
compared with PHL percentage and optimized supply structure. The open transportation
has high CO, emission than the closed transportation. It clearly clarifies that in supply
structure type 3, the potato has lowest differentiation of 12, 22, 31, 39, and 46 percent with
respect to all PHL percentage, because the potato has moderate respiration in closed
transportation. By comparing Tables IV-VI, the lowest and highest CO, emissions of
individual produces are identified. However, if the produces are mixed together, then the
produces emit moderately. If tomato and potato are combined together and transported,
then overall emission is reduced.

5. Conclusion

In this paper, Indian traditional ASCM was modeled as a planning model by considering
intermediaries to reduce the PHL and CO, emission, through optimizing the supply
structures and modified transportation method, respectively. This model is optimized
through GA with constraints. Three alternative supply structures were considered,
undergoing an optimization amongst three. One of the methods was found to have a
reduced PHL. The overall losses are reduced through the optimized supply structures like
type 1, type 2 and type 3. The PHLs are compared with each other to identify the
optimized supply structure. The supply structure type-1 approximately replicates the
existing SC, because type-1 supply structure transports produces from farmer to customer
through intermediaries.

Succeeding, supply structure type-1 has average PHL of 67 percent for potato, tomato
and their combination. Consequently, supply structure type-3 has lowest average PHL of
49 percent. Likewise, the supply structure type-1 and type-3 emits 67 and 49 percent of COs,
respectively, during open transportation. Therefore, type-3 supply structure is found as
well-optimized supply structure for each produce and their combinations. Even though
supply structures are optimized to reduce loss, CO, emission is high due to open
transportation. Therefore, the closed transportation is identified as alternative
transportation method for potato, tomato and their combination, because the CO,
emission is highly reduced as compared to open transportation, and in this closed
transportation, tomato has lowest emission of 14 percent.

The combination of potato and tomato has CO, emission of 16 percent, which is higher
than tomato but lower than potato. However, this mixed closed transportation reduces COs
emission of potato. Therefore, this research paper identified that the mixed closed
transportation is the best transportation method for the short-duration domestic purpose.
These supply structures and the mixed closed transportation method can only be
implemented when shortest distance markets are grouped together. This grouping reduces
the traveling distance and time.

6. Future work

Further this model can be extended to other produces, which is most commonly available
produces to estimate the CO, emission and losses. Because each produces has its own
respiration rate, so measuring the respiration rate of other produces to estimate the emission
becomes crucial.
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