RETRACTED: Soft computing based audio signal analysis for accident prediction
International Journal of Pervasive Computing and Communications
ISSN: 1742-7371
Article publication date: 26 March 2021
Issue publication date: 21 July 2021
Retraction statement
The publishers of International Journal of Pervasive Computing and Communications wish to retract the article Valiveti, H.B., B., A.K., Duggineni, L.C., Namburu, S. and Kuraparthi, S. (2021), “Soft computing based audio signal analysis for accident prediction”, International Journal of Pervasive Computing and Communications, Vol. 17 No. 3, pp. 329-348. https://doi.org/10.1108/IJPCC-08-2020-0120 An internal investigation into a series of submissions has uncovered evidence that the peer review process was compromised. As a result of these concerns, the findings of the article cannot be relied upon. This decision has been taken in accordance with Emerald’s publishing ethics and the COPE guidelines on retractions. The authors of this paper would like to note that they do not agree with the content of this notice. The publishers of the journal sincerely apologize to the readers.
Abstract
Purpose
Road accidents, an inadvertent mishap can be detected automatically and alerts sent instantly with the collaboration of image processing techniques and on-road video surveillance systems. However, to rely exclusively on visual information especially under adverse conditions like night times, dark areas and unfavourable weather conditions such as snowfall, rain, and fog which result in faint visibility lead to incertitude. The main goal of the proposed work is certainty of accident occurrence.
Design/methodology/approach
The authors of this work propose a method for detecting road accidents by analyzing audio signals to identify hazardous situations such as tire skidding and car crashes. The motive of this project is to build a simple and complete audio event detection system using signal feature extraction methods to improve its detection accuracy. The experimental analysis is carried out on a publicly available real time data-set consisting of audio samples like car crashes and tire skidding. The Temporal features of the recorded audio signal like Energy Volume Zero Crossing Rate 28ZCR2529 and the Spectral features like Spectral Centroid Spectral Spread Spectral Roll of factor Spectral Flux the Psychoacoustic features Energy Sub Bands ratio and Gammatonegram are computed. The extracted features are pre-processed and trained and tested using Support Vector Machine (SVM) and K-nearest neighborhood (KNN) classification algorithms for exact prediction of the accident occurrence for various SNR ranges. The combination of Gammatonegram with Temporal and Spectral features of the validates to be superior compared to the existing detection techniques.
Findings
Temporal, Spectral, Psychoacoustic features, gammetonegram of the recorded audio signal are extracted. A High level vector is generated based on centroid and the extracted features are classified with the help of machine learning algorithms like SVM, KNN and DT. The audio samples collected have varied SNR ranges and the accuracy of the classification algorithms is thoroughly tested.
Practical implications
Denoising of the audio samples for perfect feature extraction was a tedious chore.
Originality/value
The existing literature cites extraction of Temporal and Spectral features and then the application of classification algorithms. For perfect classification, the authors have chosen to construct a high level vector from all the four extracted Temporal, Spectral, Psycho acoustic and Gammetonegram features. The classification algorithms are employed on samples collected at varied SNR ranges.
Keywords
Citation
Valiveti, H.B., B., A.K., Duggineni, L.C., Namburu, S. and Kuraparthi, S. (2021), "RETRACTED: Soft computing based audio signal analysis for accident prediction", International Journal of Pervasive Computing and Communications, Vol. 17 No. 3, pp. 329-348. https://doi.org/10.1108/IJPCC-08-2020-0120
Publisher
:Emerald Publishing Limited
Copyright © 2021, Emerald Publishing Limited