An unstructured big data approach for country logistics performance assessment in global supply chains
International Journal of Operations & Production Management
ISSN: 0144-3577
Article publication date: 12 May 2020
Issue publication date: 19 June 2020
Abstract
Purpose
The purpose of this study is to explore the potential for the development of a country logistics performance assessment approach based upon textual big data analytics.
Design/methodology/approach
The study employs design science principles. Data were collected using the Global Perspectives text corpus that describes the logistics systems of 20 countries from 2006–2014. The extracted texts were processed and analysed using text analytic techniques, and domain experts were employed for training and developing the approach.
Findings
The developed approach is able to generate results in the form of logistics performance assessments. It contributes towards the development of more informed weights of the different country logistics performance categories. That said, a larger text corpus and iterative classifier training is required to produce a more robust approach for benchmarking and ranking.
Practical implications
When successfully developed and implemented, the developed approach can be used by managers and government bodies, such as the World Bank and its stakeholders, to complement the Logistics Performance Index (LPI).
Originality/value
A new and unconventional approach for logistics system performance assessment is explored. A new potential for textual big data analytic applications in supply chain management is demonstrated. A contribution to performance management in operations and supply chain management is made by demonstrating how domain-specific text corpora can be transformed into an important source of performance information.
Keywords
Acknowledgements
Earlier versions of this research have gained from presentation at the Bremen LogDynamics biennial research conference (LDIC) in 2016 and at the Nofoma, the Nordic Logistics Research Network conference in 2019. We thank the Competitiveness Platform at Copenhagen Business School for providing seed funding for the research. Finally we acknowledge the anonymous reviewers and the AE at IJOPM for their invaluable feedback.
Citation
Kinra, A., Hald, K.S., Mukkamala, R.R. and Vatrapu, R. (2020), "An unstructured big data approach for country logistics performance assessment in global supply chains", International Journal of Operations & Production Management, Vol. 40 No. 4, pp. 439-458. https://doi.org/10.1108/IJOPM-07-2019-0544
Publisher
:Emerald Publishing Limited
Copyright © 2020, Emerald Publishing Limited