GSA-based support vector neural network: a machine learning approach for crop prediction to provision sustainable farming
International Journal of Intelligent Computing and Cybernetics
ISSN: 1756-378X
Article publication date: 21 March 2022
Issue publication date: 7 March 2023
Abstract
Purpose
Automated crop prediction is needed for the following reasons: First, agricultural yields were decided by a farmer's ability to work in a certain field and with a particular crop previously. They were not always able to predict the crop and its yield solely on that idea alone. Second, seed firms frequently monitor how well new plant varieties would grow in certain settings. Third, predicting agricultural production is critical for solving emerging food security concerns, especially in the face of global climate change. Accurate production forecasts not only assist farmers in making informed economic and management decisions but they also aid in the prevention of famine. This results in farming systems’ efficiency and productivity gains, as well as reduced risk from environmental factors.
Design/methodology/approach
This research paper proposes a machine learning technique for effective autonomous crop and yield prediction, which makes use of solution encoding to create solutions randomly, and then for every generated solution, fitness is evaluated to meet highest accuracy. Major focus of the proposed work is to optimize the weight parameter in the input data. The algorithm continues until the optimal agent or optimal weight is selected, which contributes to maximum accuracy in automated crop prediction.
Findings
Performance of the proposed work is compared with different existing algorithms, such as Random Forest, support vector machine (SVM) and artificial neural network (ANN). The proposed method support vector neural network (SVNN) with gravitational search agent (GSA) is analysed based on different performance metrics, such as accuracy, sensitivity, specificity, CPU memory usage and training time, and maximum performance is determined.
Research limitations/implications
Rather than real-time data collected by Internet of Things (IoT) devices, this research focuses solely on historical data; the proposed work does not impose IoT-based smart farming, which enhances the overall agriculture system by monitoring the field in real time. The present study only predicts the sort of crop to sow not crop production.
Originality/value
The paper proposes a novel optimization algorithm, which is based on the law of gravity and mass interactions. The search agents in the proposed algorithm are a cluster of weights that interact with one another using Newtonian gravity and motion principles. A comparison was made between the suggested method and various existing strategies. The obtained results confirm the high-performance in solving diverse nonlinear functions.
Keywords
Citation
Ashwitha, A. and Latha, C.A. (2023), "GSA-based support vector neural network: a machine learning approach for crop prediction to provision sustainable farming", International Journal of Intelligent Computing and Cybernetics, Vol. 16 No. 1, pp. 1-16. https://doi.org/10.1108/IJICC-12-2021-0300
Publisher
:Emerald Publishing Limited
Copyright © 2022, Emerald Publishing Limited