Research on improving YOLOv5s algorithm for fabric defect detection
International Journal of Clothing Science and Technology
ISSN: 0955-6222
Article publication date: 11 October 2022
Issue publication date: 7 March 2023
Abstract
Purpose
In the fabric manufacturing industry, various unfavorable factors, including machine fault and yarn breakage, can easily cause fabric defects and affect product quality, begetting huge economic losses to enterprises. Thus, automatic fabric defect detection systems have become an important development direction. Herein, the most common defects in the fabric production process, like ribbon yarn, broken yarn, cotton ball, holes, yarn shedding and stains, are detected. Current fabric defect detection systems afford low detection accuracy and a high missed detection rate for small target fabric defects. Therefore, this study proposes deep learning technology for automatically detecting fabric defects by improving the YOLOv5s target detection algorithm. The improved algorithm is termed YOLOv5s-4SCK, which can effectively detect fabric defects. This study aims to discuss the aforementioned issues.
Design/methodology/approach
Specifically, based on the YOLOv5s algorithm, first, the structure of YOLOv5s is modified to add a small target detection layer, fully utilize deep and shallow features and reduce the missed detection rate of small target fabric defects. Second, the integration of CARAFE upsampling enables the effective retention of feature information and maintenance of a certain computational efficiency, thereby improving the detection accuracy. Finally, the K-Means++ clustering algorithm is used to analyze the position of the center point of the prior box to better obtain the anchor box and improve the average accuracy and evaluation index of detection.
Findings
The research results show that the YOLOv5s-4SCK algorithm increases the accuracy by 4.1% and the detection speed by 2 f.s-1 compared to the original YOLOv5s algorithm, and it effectively improves the original YOLOv5s problem of high missed detection rate of small targets.
Research limitations/implications
The YOLOv5s-4SCK proposed in this paper can effectively reduce the missed detection rate of fabric defects, improve the detection efficiency and has certain industrial value.
Practical implications
The proposed algorithm can quickly identify fabric defects, effectively improving the detection rate. In the future, the proposed algorithm will be applied in the actual industry.
Social implications
Automatic fabric defect detection reduces the manpower of inspectors, and the proposed YOLOv5s-4SCK algorithm is also suitable for other recognition fields.
Originality/value
The proposed YOLOv5s-4SCK algorithm has been tested using real cloth to ensure its accuracy, and its performance is better than the original YOLOv5s algorithm.
Keywords
Acknowledgements
Funding: This paper is supported by Science and Technology Program of Hubei Province (No. 2019AEE011).
Citation
Zhou, S., Zhao, J., Shi, Y.S., Wang, Y.F. and Mei, S.Q. (2023), "Research on improving YOLOv5s algorithm for fabric defect detection", International Journal of Clothing Science and Technology, Vol. 35 No. 1, pp. 88-106. https://doi.org/10.1108/IJCST-11-2021-0165
Publisher
:Emerald Publishing Limited
Copyright © 2022, Emerald Publishing Limited