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Abstract
Purpose – This paper presents a Monotonic Unbounded Schemes Transformer (MUST) approach to bound/
monotonize (remove undershoots and overshoots) unbounded spatial differencing schemes automatically, and
naturally. Automatically means the approach (1) captures the critical cell Peclet number when an unbounded
scheme starts to produce physically unrealistic solution automatically, and (2) removes the undershoots and
overshoots as part of the formulation without requiring human interventions. Naturally implies, all the terms in
the discretization equation of the unbounded spatial differencing scheme are retained.

Design/methodology/approach – The authors do not formulate new higher-order scheme. MUST
transforms an unbounded higher-order scheme into a bounded higher-order scheme.

Findings – The solutions obtained with MUST are identical to those without MUST when the cell Peclet
number is smaller than the critical cell Peclet number. For cell Peclet numbers larger than the critical cell
Peclet numbers, MUSTsets the nodal values to the limiter value which can be derived for the problem at-hand.
The authors propose a way to derive the limiter value. The authors tested MUST on the central differencing
scheme, the second-order upwind differencing scheme and the QUICK differencing scheme. In all cases
tested, MUST is able to (1) capture the critical cell Peclet numbers; the exact locations when overshoots and
undershoots occur, and (2) limit the nodal value to the value of the limiter values. These are achieved by
retaining all the discretization terms of the respective differencing schemes naturally and accomplished
automatically as part of the discretization process. The authors demonstrated MUST using one-dimensional
problems. Results for a two-dimensional convection–diffusion problem are shown in Appendix to show
generality ofMUST.

Originality/value – The authors present an original approach to convert any unbounded scheme to bounded
schemewhile retaining all the terms in the original discretization equation.
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Nomenclature
aE = coefficient of the east neighbor;
aP = coefficient of the nodal point;
aW = coefficient of the west neighbor;
C, D = positive constants;
ku = undershoot indicator;
ks = sign(ϕE – ϕlimit);
P = Peclet number;
S = source term;
u = fluid velocity; and
x = spatial location.

Symbols
Δx = width of a control volume;
Γ = diffusion coefficient;
ϕ = generic dependent variable;
ϕdesired = desired value of ϕ;
ϕP,ns = ϕP without source terms;
ϕP,s = ϕP with source terms;
ϕ�
P = the most current value of ϕP;

ρ = fluid density;
ξ = combined variable;
ξ 0 = undershoots variable; and
ξ″ = overshoots variable.

1. Introduction
In the modeling of the convection–diffusion equation using the finite-volume method, profile
assumptions are needed to evaluate the dependent variable at the two boundaries of a control
volume. When the central difference (CD) scheme is used, the value of the dependent
variable at an interface is interpolated linearly from the two neighboring control volumes as
shown in Figure 1a. This approach is stable and accurate when the cell Peclet numbers are
less than 2. Once the cell Peclet number exceeds 2, physically unrealistic undershoots and
overshoots are predicted. To overcome this, one-sided bias (toward the upstream neighbor)
to the interpolation is introduced. The simplest one is called the upwind scheme [Figure 1(b)]
where the value of the dependent variable at an interface is set to the value of the dependent
variable of the upstream neighbor. In multidimensional flows where the velocity is not
aligned with the grid, this approach though stable for all cell Peclet numbers, suffers from
false diffusion. To reduce false diffusion, higher-order schemes were formulated. These
include, but are not limited to the second-order upwind difference (SOUD) scheme [Figure 1
(c)] and the QUICK scheme [Figure 1(d)] (Leonard, 1979). Unlike the CD scheme and the
upwind scheme, the SOUD scheme involves one more upstream neighbor, namely, the WW
neighbor as shown in Figure 1(c). The QUICK scheme includes two more neighbors one
upstream (WW) neighbor and one downstream (p) neighbor as depicted in Figure 1(d). These
two higher-order upwind family difference schemes reduce false diffusion, but admit
physically unrealistic solutions which appear as undershoots and overshoots. In the CD
scheme, the point where physically unrealistic solution starts is known. It happens when the
cell Peclet number is larger than 2 regardless of the values of the neighboring dependent
values. Therefore, it is possible to devise an approach which switch to another stable scheme
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when the cell Peclet number exceed 2. Spalding (Spalding, 1972) presented such a scheme
and it is called the hybrid scheme.

Multiples studies comparing various spatial difference schemes for have been reported in
the literature (de Vahl Davis and Mallinson, 1976; Beier et al., 1983; Leschziner, 1980;
Leschziner and Rodi, 1981; Pollard and Siu, 1982; Runchal, 1972; Han et al., 1981; Shyy
et al., 1992; Vanka, 1987). De Vahl Davis and Mallinson (de Vahl Davis and Mallinson,
1976) evaluated the upwind and CD schemes using a driven cavity problem. Their main
concern was to evaluate the effects of the two schemes on false diffusion. Beier et al. (Beier
et al., 1983) examined five spatial difference scheme including the upwind, CD and QUICK
schemes on their abilities to model recirculating flows. They concluded that QUICK and CD
schemes are more accurate than the upwind scheme. Leschziner (Leschziner, 1980)
evaluated the hybrid scheme, a hybrid central and skew-upwind scheme and the QUICK
scheme on four problems with and without recirculating flows. He concluded that the hybrid
central and skew-upwind scheme and the QUICK scheme performed better than the hybrid
scheme. However, these two more accurate schemes suffer from boundness or undershoots
and overshoots problems. Leschziner and Rodi (Leschziner and Rodi, 1981) extended
Leschziner’s work (Leschziner, 1980) to study unconfined turbulent recirculating flows
using the same three difference schemes. The same conclusions were drawn. Pollard and Siu
(Pollard and Siu, 1982) tested the upwind scheme, the hybrid scheme and the QUICK
scheme on three flow geometries, namely, flow between parallel plates, axisymmetric flow
with sudden expansion and driven cavity flow. The QUICK scheme was found to be equal or
more accurate than the upwind and the hybrid schemes. Runchal (Runchal, 1972) carried out
a systematic performance tests comparing the upwind difference scheme, the CD scheme
and the hybrid difference scheme. As expected, the upwind difference scheme and the hybrid
difference scheme were unconditionally stable but less accurate than the CD scheme when
the CD scheme produced physically realistic solutions. Han et al. (Han et al., 1981) studied

Flow direc�on Flow direc�on

Flow direc�on Flow direc�on

(a) (b)

(c) (d)

Source: Figure by authors

Figure 1. Four spatial difference schemes (a) central; (b) upwind; (c) second-order upwind and (d) QUICK
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the hybrid scheme and the QUICK scheme for both laminar and turbulent recirculating
flows. They concluded that QUICK scheme, though not unconditionally stable is more
accurate than the hybrid scheme. Shyy et al. (Shyy et al., 1992) carried out numerical studies
on a driven cavity problem using different implementations of the second-order upwind
scheme. They did not notice oscillations in the solutions and mentioned that a critical cell
Reynolds (Peclet) number similar to the CD scheme above which wiggles are noticed may
not be valid for the SOUD scheme. Vanka (Vanka, 1987) implemented three forms of the
SOUD scheme and compared their solutions with the hybrid scheme. They found that while
the hybrid scheme is stable while the SOUD scheme is unstable above a certain Reynolds
number. He concluded that if the reasons for the overshoots can be identified and removed,
SOUD scheme’s second-order accuracy will be beneficial.

In an effort to ensure boundness of higher-order schemes, the flux limiters (FL) and
normalized variables (NV) approaches have been proposed. Piperno and Depeyre (Piperno and
Depeyre, 1998) proposed criteria for the design of limiters. Waterson and Deconinck (Waterson
and Deconinck, 2007) proposed a unified design principles to formulated bounded higher-order
spatial differencing schemes. The NV schemes examined by the authors were converted to the
FL approach to facilitate direct comparisons. Some higher-order schemes include, but are not
limited to, MINMOD (Harten, 1983), CLAM (van Leer, 1974), MUSCL (van Leer, 1979),
SMART (Gaskell and Lau, 1988), WENO (Liu et al., 1994). Shu (Shu, 2009) gave an
exhaustive review on WENO of various order. WENO was used to solve parabolic problems
with degenerate diffusion (Arbogast et al., 2019). Recent developments include but are not
limited to, a sixth-order WENO scheme (Abedian, 2023), WENO for nonlinear degenerate
parabolic problems (Jiang, 2021), a fourth-order scheme for natural convection in enclosures
(Balam and Gupta, 2020), comparisons of different spatial differencing schemes for one-
dimensional multiphase flows in porousmedia (Moshiri andManzari, 2019).

The common traits in the conclusions of the above studies are (1) upwind scheme and
hybrid scheme are stable but less accurate, (2) CD scheme, SOUD scheme and QUICK
scheme are more accurate but suffer from boundness problems, not unconditionally stable,
(3) that a critical cell Reynolds (Peclet) number similar to the CD scheme above which
wiggles are noticed may not be valid for the SOUD scheme and (4) if the reasons for the
overshoots can be identified and removed, SOUD scheme’s second-order accuracy will be
beneficial.

This article will address the last two items. We propose an approach to remove
undershoots and overshoots automatically and naturally. Automatically means our approach
capture the critical Peclet number when a higher-order upwind scheme starts to produce
physically unrealistic solution automatically as part of our formulation and does not require
human interventions. Naturally implies we retain all the terms in the discretization equation
of the higher-order upwind scheme.

In the next three subsections, we describe the monotonic behavior of the convection-–
diffusion equation. This is followed by a discussion on the problem by examining the
discretization equation of the CD scheme which does not ensure monotonic variations. The
objectives of the article are then stated. The outline of the article is presented to conclude this
section.

1.1 Steady, convection–diffusion equation without source [1]
In this section, we will re-examine the way the discretization schemes are implemented to
discretize the steady, convection–diffusion equation without source which, for one-
dimensional situations, can be written as:
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d ρuϕð Þ
dx

=
d
dx

Γ
dϕ
dx

� �
(1)

where ρ is the fluid density, u is the fluid velocity, ϕ is a generic dependent variable, x is the
spatial location and Γ is the diffusion coefficient. Equation (1) is subjected to the following
boundary conditions:

x = 0 ! ϕ=ϕ0 (2a)

x =L ! ϕ=ϕL (2b)

Using equation (1) with equation (2) as the boundary conditions, the exact solution can be
written as:

ϕ−ϕ0

ϕL −ϕ0
=

exp Px=Lð Þ− 1
exp Pð Þ− 1

(3)

where the Peclet number P is defined as:

P≡
ρuL
Γ

(4)

From the exact solution given by equation (3), the dependent variable varies exponentially
between the two end points. As such, the exact solution does not contain undershoots (ϕ <
ϕmin) or overshoots (ϕ > ϕmax) where ϕmin =min(ϕ0, ϕL), and ϕmax =max(ϕ0, ϕL).

Exponential Scheme: The exponential scheme is based on the exact solution
[equation (3)], and for constant fluid properties the familiar algebraic discretization equation
can be written as:

aPϕP = aEϕE + aWϕW (5)

where

aE =
P

exp⁡ Pð Þ− 1
(6a)

aW =
Pexp⁡ Pð Þ
exp⁡ Pð Þ− 1

(6b)

aP = aE + aW (6c)

The subscripts in equations (5) and (6) refer to the control volume of interest p, its west
neighbor W and its east neighbor E as shown in Figure 2. As the exponential scheme
[equation (6)] is obtained from the exact solution, it does not admit undershoots and
overshoots in its solutions. In another words, the nodal value of the dependent variable is
between the values of the upstream neighbor and the downstream neighbor ormin(ϕE, ϕW) ≤
ϕP ≤max(ϕE, ϕW).

The problem: Unbounded differencing schemes including, but are not limited to, the CD
scheme, the SOUD scheme and the QUICK scheme, admit undershoots and overshoots from
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the convection–diffusion parts of the governing equation (equation (1)). We will use the CD
scheme to demonstrate this behavior. Using the CD scheme, and for constant properties, a
discretization equation for equation (1) is given by equation (5) and the coefficients of the
CD scheme can be written as:

aE = 1−
P
2

(7a)

aW = 1+
P
2

(7b)

aP = aE + aW (7c)

The values of ϕP for P = 3, with different ϕE, and ϕWobtained using equations (5) and (7) are
shown in Table 1. For the CD scheme, it is obvious when the cell Peclet number is great than
2, the nodal value ϕP overshoots or undershoots the value of its upstream neighbor ϕW. It is
possible to use the hybrid scheme (Spalding, 1972) to switch to the upwind scheme when P >
2 to avoid undershoots or overshoots.

In this simple example, it can be seen that a two-step process is needed to eliminate
undershoots and overshoots. These are (1) detecting the critical cell P where undershoots or
overshoots begin, and (2) switching to another scheme which does not produce undershoots
or overshoots.

There are two issues associated with this approach of detecting the critical cell Peclet
number a priori. First, for the CD scheme, the demarcation of when to switch is known and it
is when jPj ≥ 2. However, this demarcation is not so obvious in other unbounded difference
schemes. There is a second issue which will be discussed in the next section.

WW W P Ew e

x

Source: Figure by authors

Figure 2. One-dimensional control volume

Table 1. Predicted ϕP using the central difference scheme

ϕW ϕE ϕP Remarks

0.0 1.0 −0.5 Undershoot
0.5 1.0 0.375
1.0 0.0 1.25 Overshoot
1.0 0.5 1.125

Source: Table by authors
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1.2 Steady, convection–diffusion equation with source
In this section, we consider the steady, convection–diffusion equation with source which, for
one-dimensional situations can be written as:

d ρuϕð Þ
dx

=
d
dx

Γ
dϕ
dx

� �
+S (8)

where S is the source term. The discretization equation for equation (8) using the exponential
scheme is:

aPϕP = aEϕE + aWϕW +b (9)

where

aE =
P

exp⁡ Pð Þ− 1
(10a)

aW =
Pexp⁡ Pð Þ
exp⁡ Pð Þ− 1

(10b)

aP = aE + aW (10c)

b=
S Δxð Þ2

Γ
(10d)

where Δx is the width of a control volume shown in Figure 2.
Let us examine the effects of the source term. For this discussion, we will consider a

situation where u > 0, and ϕW < ϕE. The exponential scheme without source [equation (10a–c)]
produces nodal ϕP between ϕW and ϕE. For ease of discussions, we will call this nodal value
without source as ϕP,ns. Now consider a situation where there is a positive source, the
exponential schemewill predict nodalϕPwith positive source ofϕW ≤ϕP,ns <ϕP,s.

The corresponding discretization equation for the CD scheme is the same as given in
equation (9). The coefficients for the CD scheme are:

aE = 1−
P
2

(11a)

aW = 1+
P
2

(11b)

aP = aE + aW (11c)

b=
S Δxð Þ2

Γ
(11d)
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It is commonly accepted that in the CD scheme, the critical cell Peclet number, where the nodal
ϕP values fall below or exceed the upstream neighbor values, is 2. However, this critical cell
Peclet number is known only when there is no physical source term. When there are physical
sources, this demarcation is not known a priori even for the CD scheme! [2] We will again
consider a situation where u > 0, and ϕW < ϕE. To better understand this statement, let us
consider a situation where the convection–diffusion part of the discretization equation of the CD
scheme is operating in the undershoot regime or ϕP,ns ≤ ϕW. For this to happen, the cell Peclet
number must be greater than 2. Now, we will introduce a positive source. Using equation (11),
there are two scenarios of interest. First, the positive source is smaller than ϕP,ns from the
convection–diffusion part of the discretization equation. This leads to a nodal ϕwhich is ϕP,ns <
ϕP,s < ϕW. Second, the positive source is larger than ϕP,ns from the convection–diffusion part of
the discretization equation. This leads to a nodalϕwhereϕP,ns <ϕW <ϕP,s. In this example, with
the same undershoot from the discretization of the convection–diffusion part, depending on the
strength of the source, the nodal ϕP value with positive source can be smaller than or larger than
the upstream neighbor value. In both cases, due to the undershoot created by the discretization
of the convection–diffusion part of the governing equation, ϕP,CD < ϕP,EXP. For the CD scheme,
the most conservative approach is to switch to a bounded scheme when jPj > 2 as done in the
hybrid scheme (Spalding, 1972) for all situation.

When there is no source term, for the CD scheme, there is a critical cell Peclet number for
the convection–diffusion part of the discretization equation where, ϕP falls below or exceed
the value of the upstream neighbor. This, however, is not the case in other unbounded upwind
scheme; even for the convection–diffusion part of the discretization equation. Source terms
makes the problemmore difficult to analyze.

In summary, when an unbounded spatial differencing scheme is used in the presence of
physical sources, and there are no overshoots (for u > 0, ϕP > ϕW) or undershoots (for u > 0,
ϕP < ϕW) in the solutions, it is not possible to conclude that there are no overshoots or
undershoots in the convection–diffusion part of the governing equation.

As a result, there is a need to device an approach that (1) automatically detects when
undershoots and overshoots, (2) eliminates the detected undershoots and overshoots and (3)
continues to use all the terms of the same higher-order scheme.

1.3 Objectives of the article
This article presents an approach to (1) define and determine the undershoots and overshoots
values, (2) automatically captures the exact locations where undershoots and overshoots
occur, (3) limits the nodal value to a value determined in (1) and (4) continues to use the
same higher-order scheme. The final discretization equation has the same order as the
original discretization equation as all terms in the original discretization equation are
retained. These are achieved automatically (without ad hoc intervention), and naturally
(retaining all discretization terms associated with the governing equation).

1.4 Outline of the article
The remainder of this article is divided into four (4) sections. The always-positive variable
treatment of Patankar (Patankar, 1980) is discussed in the next section. This approach
ensures an always-positive variable remains positive throughout the solutions process. In
another word, it limits the value of a variable ϕ to zero and above or ϕ = max(ϕ, 0). The
extension of this approach to limit a variable ϕ to any arbitrary minimum value ϕmin or ϕ =
max(ϕ, ϕmin) is then described. In the same section, we review Patankar’s approach to set the
value of an internal control volume to any desired value. The incorporation of our approach
using extensions of Patankar’s always-positive variable and internal value specification to
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the CD scheme, the SOUD scheme and the QUICK scheme is presented in the following
section. This approach transforms an unbounded spatial difference scheme to a bounded
spatial difference scheme while maintaining all the discretization terms of the unbounded
scheme and is called Monotonic Upwind Scheme Transformer (MUST). The next section
demonstrated the capabilities of MUST using the CD, SOUD and QUICK schemes. This
article then concludes with some concluding remarks. We presented initial extension of
MUST to a simple two-dimensional problem in Appendix to show the generality ofMUST.

2. Treatment of always-positive variables and its generalization
In this section, we will describe Patankar’s (Patankar, 1980) always-positive variable
treatment. This is followed by an extension of the approach to eliminate undershoots. We
will conclude this section by extending the undershoots elimination approach to eliminate
overshoots.

2.1 Patankar’s always-positive variable treatment
As discussed in Patankar (Patankar, 1980), this approach ensures an always-positive variable
remains always positive in the presence of a negative source term. Consider a discretization
equation with positive coefficients, and a negative source (C is positive) given in
equation (12):

aPϕP = aEϕE + aWϕW −C (12)

where

aP = aE + aW (13)

We can re-write equation (12) as:

aP +
C
ϕ�
P

� �
ϕP = aEϕE + aWϕW (14)

where ϕ�
P is the most current value of ϕP. Note that once converged, ϕ

�
P =ϕP, equation (14)

reverts back to the original discretization equation, namely, equation (12). As there are no
negative source terms on the right-side of equation (14), and all coefficients are positive, ϕP

will remains always positive. By this simple re-arrangement of the discretization equation,
we have ensured ϕP to be always positive. However, this is not exactly what we need in
mitigating undershoots or overshoots in our spatial differencing schemes. In the spatial
differencing schemes, we want an approach that will eliminate (1) undershoots by ensuring
ϕP ≥ ϕdesired, and (2) overshoots by guaranteeing ϕP ≤ ϕdesired. We will now extend the
always-positive variable treatment to eliminate undershoots and overshoots. A combined
formulation will then be presented.

2.2 Elimination of undershoots
In subsection 2.1, Patankar presented a way to ensure an always-positive variable to remains
always positive. Another way to view this is Patankar described an approach to eliminates
undershoots of a variable ϕ to values below zero. In our application, we want to keep a
variable from falling below a desired value ϕdesired. We will follow a three-step approach by
(1) define a new variable ξ0 ≡ ϕ – ϕdesired, (2) re-write the discretization equation in-terms of
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ξ0 and (3) apply Patankar’s approach to ensure ξ0 ≥ 0, which in-turns means ϕ ≥ ϕdesired. We
define a new variable ξ0 as:

ξ
0
≡ϕ−ϕdesired (15)

where ϕdesired is the desire value we want to set the value of the dependent variable. We will
add the same term to both sides of equation (12) as:

aP ϕP −ϕdesiredð Þ=aEϕE + aWϕW −C− aPϕdesired (16)

Using equation (13), equation (16) can be written as:

aP ϕP −ϕdesiredð Þ=aE ϕE −ϕdesiredð Þ+aW ϕW −ϕdesiredð Þ−C (17)

Using equation (15), equation (17) becomes:

aPξ
0
P = aEξ

0
E + aWξ

0
W −C (18)

Now, we can ensure that ξ0 is always positive by re-arranging equation (18) as:

aP +
C
ξ
0�
P

 !
ξ
0
P = aEξ

0
E + aWξ

0
W (19)

As ξ
0
P ≥ 0, from equation (19), we have developed a way to ensure ϕp ≥ ϕdesired! This has

been done by keeping all the terms of the original discretization equation, and without any
approximation or alteration to the final converged value.

2.3 Elimination of overshoots
Overshoots are due to the presence of positive sources (D > 0) as written in equation (20):

aPϕP = aEϕE + aWϕW +D (20)

Using equation (15), a final discretization equation can be written as:

aP −
D
ξ
0�
P

 !
ξ
0
P = aEξ

0
E + aWξ

0
W (21)

Two observations can be made. These are (1) when aP = aE + aW, aE + aWð Þ= aP −D=ξ�P
� �

maybe greater than 1, and (2) the aP maybe negative. Both of these violate some of
Patankar’s four basic rules (Patankar, 1980). We will not accept this type of drawbacks
in our formulation. To overcome these short-comings, we will define another variable
as:

ξ″≡ϕdesired −ϕ (22)

Using equation (22) and equation (20), and after some algebraic rearrangements, we get:

HFF
34,11

4058



aP +
D
ξ″�P

 !
ξ″P = aEξ″E + aWξ″W (23)

Equation (23) ensures that ξ″P ≥ 0 or ϕdesired ≥ ϕP, and eliminates overshoots. Note that the
problems encountered by using equation (15) [with equation (21) as the final discretization
equation] to eliminate overshoots are not found in equation (23). Now that we have
formulated approaches to eliminate undershoots, and overshoots, we will present a combined
formulation applicable to both situations.

2.4 Combined formulation
We will consider a situation where undershoots and overshoots (where C > 0 andD > 0) may
occur as described in equation (24):

aPϕP = aEϕE + aWϕW +D−C (24)

Undershoots may occur when C > D. Using the approach described in the previous section,
we can eliminate undershoots using:

aP +
C
ξ
0�
P

 !
ξ
0
P = aEξ

0
E + aWξ

0
W +D (25)

As C > 0, the coefficient for ξ
0
P is always positive; undershoots are eliminated. We can

eliminate overshoots using:

aP +
D
ξ″�P

 !
ξ″P = aEξ″E + aWξ″W +C (26)

Again, all coefficients are positive, thus, eliminating overshoots. We will now define a
combined variable:

ξ≡ ku ϕ−ϕdesiredð Þ+ 1− kuð Þ ϕdesired −ϕð Þ (27)

where ku is an undershoot indicator given by:

ku ≡ sign ϕ−ϕdesired; 0ð Þ (28)

Using equation (27), equation (25) and equation (26) can be written as:

aP −
min⁡ − ksC; 0ð Þ+min⁡ ksD; 0ð Þ½ �

ξ�P

 !
ξP = aEξE + aWξW +max⁡ − ksC; 0ð Þ+max⁡ ksD; 0ð Þ

(29)
where

ks = sign ϕ−ϕdesiredð Þ (30)
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2.5 Patankar’s internal value specification
We now describe Patankar’s approach to set the value of an internal control volume to any
desired value (ϕP,desired). The discretization equation with a source can be written as:

aP − SPΔxð ÞϕP = aEϕE + aWϕW +SCΔx (31)

We set SC = 1030 ϕP,desired, and SP = –1030. Substituting these into equation (31), it reduces to

aP + 1030Δx
� �

ϕP = aEϕE + aWϕW + 1030ϕP;desiredΔx (32)

Since all other terms are finite, equation (32) reduces to:

1030ϕP = 1030ϕP;desired (33)

or

ϕP =ϕP;desired (34)

Using this simple approach, we can set the value of an internal control volume to any desired
value.

2.6 Remarks
We presented an approach to ensure the dependent variable at a control volume to be larger
than or equal to any arbitrary minimum value and smaller than or equal to any arbitrary
maximum value. This approach eliminates undershoots and overshoots due to sources. We
also describe the approach to set an internal control volume to any desired value of Patankar
(Patankar, 1980).

In spatial differencing schemes, undershoots and overshoots can be the result of sources
and/or negative coefficients. We present an extension of the approach presented in this
section to eliminate undershoots and overshoots as the result of sources and/or negative
coefficients.

3. Undershoots, overshoots and limiter value
In this section, we will define what we will call as undershoots and overshoots. If needed,
other definitions can be derived. To begin, we use the solution to the steady, convection–
diffusion equation without source given by equation (3). We will first describe the
undershoots, and overshoots definitions. We will then formulate our undershoots, and
overshoots definitions for the general situations when there are nonzero sources.

3.1 Undershoots and overshoots
For the one-dimensional control volume shown in Figure 2, when there is no flow or the
Peclet number p= 0, the nodal ϕP value is (ϕW + ϕE)/2 as shown in Figures 3 and 4. For the
situation where u > 0, as the velocity (or Peclet number) increases, the nodal ϕP value will
approach the value of the dependent variable at the immediate upstream neighbor or ϕW

again, as depicted in Figures 3 and 4. The exact solutions for these two situations are given
by equation (3). Figure 3 shows a situation where ϕE > ϕW. In this situation, the nodal ϕP

value decreases, and approaches ϕW. This ϕW, is indeed the correct limiting value when there
are no physical source terms or S = 0. Unbounded differencing scheme can lead to
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undershoots (ϕP < ϕW) as shown in Figure 3. The other two curves in Figure 3 show two
other possible solutions. They are approximate solutions, but there are no undershoots in
these solutions. Figure 4 shows a situation where overshoots (ϕP > ϕW) is encountered.
These two physically impossible solutions are called undershoots (Figure 3), and overshoots
(Figure 4), respectively. From Figures 3 and 4, we want to eliminate:

Undershoots ϕE >ϕW
Overshoots ϕE <ϕW

(35)

3.2 Limiter value
Once undershoots or overshoots are detected, MUST sets the nodal value of the dependent
variable to a yet-to-be-derived limiter value. This section presents one such possible limiter.
Other forms of limiter can be derived.

When there are no sources, the limiter value is the value of the immediate upstream nodal.
So, when u > 0, ϕP! ϕWor the limit value ϕlimit,P = ϕW.

When there is a positive source term, the limiting ϕP value should be higher than ϕW.
Similarly, when there is a negative source term, the limiting ϕP value should be lower than

Peclet Number

. ( + )

No undershoots

Exact Undershoot

Source: Figure by authors

Figure 3. Steady convection–diffusion with zero source – undershoots

Peclet Number

. ( + )
No overshoots

Exact Overshoot

Source: Figure by authors

Figure 4. Steady convection–diffusion with zero source – overshoots
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ϕW. There is no unique way to formulate the limiting value. We present a possible way to
formulate this value. Other limiting values can be formulated.

This limiting ϕP value is obtained by performing a balance over the control volume.
Performing a balance over control volume p shown in Figure 2, and for constant properties,
we can write:

ρuϕw + SΔx= ρuϕe (36)

In equation (36), we assumed unit flow area. Using upwind approximation, equation (36) can
be written as:

ϕe =ϕlimit;P =ϕW +
SΔx
F

(37)

where F = ρu. A quick look at what we have achieved with equation (37) is beneficial. When
the source term is zero, the limiting ϕ value reduces correctly to ϕW or the immediate
upstream neighbor. When there is a positive source, the nodal value is limited to the upstream
value plus the contribution from the source term.When the source term is negative, the nodal
value is limited to the upstream valueminus the contribution from the source term. Also note
that diffusion is neglected in the balance equation [equation (36)]. Extending the idea in
equation (35), we can define undershoots and overshoots in the presence of sources as:

Undershoots ϕE >ϕW +
SΔx
F

Overshoots ϕE <ϕW +
SΔx
F

(38)

Now that we have described our undershoots definition, overshoots definition and
formulated the limit value, we will proceed to incorporate this inMUST.

Remarks: As discussed, the proposed limiter is one possible way to formulate the
limiting value. In this approach, diffusion is neglected. For steady, one-dimensional
problems, the nodal value approaches the value of its immediate upstream neighbor when
(1) there is no source term in the control volume of interest, or (2) when the cell Peclet
number is “large” when there is a finite source term in the control volume of interest.
Other limiters can be derived by including diffusion, and using higher-order
extrapolations of the interface value in equation (36). For two-dimensional convection-
diffusion problem without source, one possible limiter is the mixing-cup values given by
equation (A1). To maintain focus, this article aims at presenting the concept of MUST.
The effects of different limiters on the final solutions are considered outside the scope of
this article The study on the effects of the limiter is left to the explorations of interested
readers.

4. Incorporation into spatial differencing schemes
In this section, we will demonstrate how to incorporate MUST into three existing higher-
order differencing schemes which suffer from undershoots and overshoots. These are (1) the
CD scheme, (2) the SOUD scheme and (3) the QUICK scheme. Physically unrealistic
solutions in the CD scheme are due to the presence of negative coefficients. In this article, we
consider a way to implement the SOUD scheme where physically unrealistic solutions are
the results of the source terms from the higher-order terms of the convection-diffusion parts
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of the governing equation. Physically unrealistic solutions in the QUICK scheme can be due
to the negative coefficients or the additional source terms due to the higher-order terms of
the convection–diffusion parts of the governing equation. We elect to demonstrate MUST
utilities using these three schemes as they cover all possible combinations of the reasons for
physically unrealistic results of a spatial difference scheme. We will show the detailed
formulations for u > 0. Formulation for u < 0 does not involve new concepts and is left to the
explorations of interested readers.

4.1 The central difference scheme
The discretization equation using the CD scheme (when u > 0) is given by equation (9) and
equation (11). We notice that aEwill be negative when the cell Peclet number is larger than 2.
This negative aE leads to undershoots, and overshoots. We want to develop an approach to
eliminate undershoots, and overshoots when aE < 0. We will start by removing the negative
coefficient from the neighbor. To achieve this, we will add zeroes of different forms to both
sides of equation (9) to write:

½aE + aW + ðjaEj+aEÞ�ϕP = aEϕE + aWϕW +b+ ðjaEj+aEÞϕE (39)

At this point, it is good to know that we have not changed equation (9). Equation (39) is just a
more cumbersome form of equation (9) which we re-arranged as:

ðjaEj+aWÞϕP = jaEjϕE + aWϕW +b+ 2aE ϕE −ϕPð Þ (40)

Comparing equation (9) and equation (40), it is clear that the additional terms arise when P >
2 or aE < 0. A combined discretization equation for all Peclet numbers or all values of aE can
be written as:

ðjaEj+aWÞϕP = jaEjϕE + aWϕW +b+ 2min aE; 0ð Þ ϕE −ϕPð Þ (41)

With equation (41), we have eliminated negative coefficient aE for the neighbor node.
However, in this process, we have created an additional source term due to removal of the
negative coefficient. This additional source can potentially be negative which, may leads to
undershoots or positive which, may results in overshoots. Since aE < 0, the additional source
term is negativewhen ϕP < ϕE, and positive when ϕP > ϕE.

Undershoots: To eliminate undershoots, we must ensure ϕP ≥ ϕlimit,P given by equation
(37). Borrowing the idea of equation (15), we will define:

ξ
0
≡ϕ−ϕlimit;P =ϕ−ϕW −

SΔx
F

(42)

The main objective to define a new variable ξ0 is to ensure our dependent variable ϕ is larger
than a lower limit ϕlimit,P. Subtracting the same terms from both sides of equation (41) gives:

ðjaEj+aWÞ ϕP −ϕW −
SΔx
F

� �
= jaEj ϕE −ϕW −

SΔx
F

� �
+aW ϕW −ϕW −

SΔx
F

� �

+ 2min aE; 0ð Þ ϕE −ϕPð Þ+b (43)

Equation (43) can be written more compactly as:
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ðjaEj+aWÞξ0
P = jaEjξ0

E + aWξ
0
W + 2min aE; 0ð Þ ϕE −ϕPð Þ+b (44)

To eliminate undershoots, equation (44) can be written as:

jaEj+ aW −
min 2min aE; 0ð ÞϕE; 0½ �+min − 2min aE; 0ð ÞϕP; 0½ �+min b; 0½ �� �

ξ
0 �
P

" #
ξ
0
P =

jaEjξ0
E + aWξ

0
W +max 2min aE; 0ð ÞϕE; 0½ �+max − 2min aE; 0ð ÞϕP; 0½ �+max b; 0½ �

(45)

Using equation (41), all coefficients are positive during the iteration process. When the third-
term on the right-side of equation (41) becomes zero, it appears as a positive source on the
third-term of equation (41). The same is true for the fourth-term. This positive source will not
lead to undershoots. It must be stressed that once a converged solution is obtained, (1) for
situations where aE > 0, equation (41) is identical to equation (9), and (2) for situations where
aE < 0, equation (41) sets the nodal value of the dependent variable ξ

0
P to the limiting value

of the dependent variable given by equation (42); ensuring there is no undershoots. We also
ensure that negative b does not lead to undershoots.

Overshoots: To eliminate overshoots, we will define:

ξ″≡ϕlimit;P −ϕ=ϕW +
SΔx
F

−ϕ (46)

Using equation (46), and after some algebraic rearrangement, the discretization equation for
all Peclet numbers can be written as:

ðjaEj+aWÞξ″P = jaEjξ″E + aWξ″W − 2min aE; 0ð Þ ϕE −ϕPð Þ− b (47)

To avoid overshoots, we will write equation (47) as:

jaEj+ aW +
max 2min aE; 0ð ÞϕE; 0½ �+max − 2min aE; 0ð ÞϕP; 0½ �+max b; 0½ �� �

ξ″
�

P

" #
ξ″P =

jaEjξ″E + aWξ″W −min 2min aE; 0ð Þ ϕE −ϕPð Þ; 0� �
−min b; 0½ �

(48)

To facilitate combined formulation, we will write equation (48) as:

jaEj+aW −
min − 2min aE; 0ð ÞϕE; 0½ �+min 2min aE; 0ð ÞϕP; 0½ �+min − b; 0½ �� �

ξ″
�

P

" #
ξ″P =

jaEjξ″E + aWξ″W +max − 2min aE; 0ð ÞϕE; 0½ �+max 2min aE; 0ð ÞϕP; 0½ �+max − b; 0½ �
(49)

Now that we have the discretization equations to prevent undershoots and overshoots, and
we will formulate a discretization equation applicable to both situations.

Combined Formulation: For this combined formulation, we will define a combined
variable ξ:
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ξ≡ kuξ
0
+ 1− kuð Þξ″ (50)

where ku is an undershoot indicator given by:

ku ≡max sign ϕE −ϕlimitð Þ; 0½ � (51)

Using equation (45), equation (49) and equation (50), a discretization equation for the
combined formulation can be written as:

jaEj+ aW −
min ks2min aE; 0ð ÞϕE; 0½ �+min − ks2min aE; 0ð ÞϕP; 0½ �+min ksb; 0½ �� �

ξ�P

" #
ξP =

jaEjξE + aWξW +max ks2min aE; 0ð ÞϕE; 0½ �+max − ks2min aE; 0ð ÞϕP; 0½ �+max ksb; 0ð Þ
(52)

where

ks = sign ϕE −ϕlimitð Þ (53)

Equation (52) ensures that undershoots, and overshoots are eliminated during the iteration
process. The nodal ϕP are limited according to equation (50).

MUST with Pe < 2: In the absence of source terms, and when the cell Peclet number is
less than 2, the coefficient aE in equation (11a) is > 0. As a result, min(aE, 0) in equation (52)
becomes zero. Equation (52) can be simplified to:

ðjaEj+aWÞϕE = jaEjϕE + aWϕW (54)

It can be seen that the discretization equation with MUST reduces to the discretization
equation of the original CD scheme.

MUSTwith Pe > 2: For this discussion, we will neglect the source term, and let ϕE > ϕW.
For this situation, ϕlimit = ϕW, ks = 1 and ku = 1. As the cell Peclet number is greater than 2, the
coefficient aE in equation (11a) is < 0. As a result,min(aE, 0) in equation (52) is aE. The terms
min[ks2min(aE,0)ϕE, 0] = 2aEϕE, min[–ks2min(aE, 0)ϕP, 0] = 0, max[ks2min(aE, 0)ϕE,0] = 0
andmax[–ks2min(aE, 0)ϕP, 0] = –2aEϕP. Equation (48) can be simplified as:

jaEj+aW −
2aEϕE

ξ�P

� �
ξP = jaEjξE + aWξW − 2aEϕP (55)

Upon convergence, ξ�P = ξP, equation (55) becomes:

ðjaEj+aWÞϕP − 2aEϕE = jaEjϕE + aWϕW − 2aEϕP (56)

Since aE < 0, equation (56) can be written as:

aE + aWð ÞϕP = aEϕE + aWϕW (57)

The CD scheme with MUST reverts to the CD scheme without MUST [equations (5) and
(7)]. This is all good. However, since aE < 0, equation (57) will produce undershoots and
overshoots just like the CD schemewithout MUST.

This is avoided as MUST embeds Patankar’s internal value specification treatment
described in subsection 2.5 to set the nodal value to the value of the limiter. During the
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iteration process when the cell Peclet number Pe is greater than 2, the nodal value ϕP

approaches the limiter ϕlimit. As a result, ξ
�
P =ϕ�

P −ϕlimit approaches zero. The last term of
the coefficient for ξP in equation (55):

2aEϕE

ξ�P
! −∞ (58)

Equation (55) becomes:

ðjaEj+aW +∞ÞξP = jaEjξE + aWξW − 2aEϕP (59)

which reduces to

∞ð ÞξP = f inite (60)

ξP ! 0 (61)

ξP ≡ϕP −ϕlimit ! 0 (62)

ϕP ! ϕlimit (63)

It can be seen that MUSTsets the nodal value of the dependent variable ϕP to the value of the
limiter. The manifestation of this approach will be discussed when the solutions using the CD
scheme are presented later in this article.

Remarks: Although the CD scheme is used as demonstration, the above treatment can be
carried out for any spatial differencing scheme where undershoots and overshoots are the
results of negative coefficient(s).

We presented an approach to eliminate undershoots, and overshoots as a result of physical
sources in subsection 2.4. In subsection 3.1, we extended the approach to eliminate undershoots
and overshoots due to negative coefficient(s).Wewill now applyMUST to the SOUD scheme.

4.2 The second-order upwind difference scheme
One possible implementation of the SOUD scheme for the convection–diffusion terms when
u > 0 is:

ρu ϕP −ϕWð Þ+ ρu
2

ϕP − 2ϕW +ϕWWð Þ=Γ
ϕE −ϕP

Δx

� �
−

ϕP −ϕW

Δx

� �� 	
+SΔx (64)

whereWW is the west neighbor of control volumeW as shown in Figure 2. Equation (64) can
be written as:

aPϕP = aEϕE + aWϕW +b (65)

where

aE = 1 (66a)
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aW = 1+P (66b)

aP = 1+ 1+Pð Þ=aE + aW (66c)

b=
P
2

2ϕW −ϕP −ϕWWð Þ+ S Δxð Þ2
Γ

(66d)

This implementation of the SOUD scheme is chosen as it is a case where the undershoots and
overshoots are the results of the sources. Equation (64) can be expanded as:

aE + aWð ÞϕP = aEϕE + aWϕW +
P
2

2ϕW −ϕP −ϕWWð Þ+ S Δxð Þ2
Γ

(67)

Unlike the CD scheme, since the coefficients aE and aW are positive, equation (67) is
applicable to all Peclet numbers as far as the coefficients are concern. We seek to eliminate
undershoots and overshoots as the result of the source terms.

Undershoots: To eliminate undershoots, and using equation (42), equation (67) with
MUSTcan be written as:

aE + aW −
P min 2ϕW; 0ð Þ+min −ϕP; 0ð Þ+min −ϕWW; 0ð Þ� �

=2+min S Δxð Þ2=Γ; 0
h i
 �

ξ
0 �
P

2
4

3
5ξ0

P

= aEξ
0
E + aWξ

0
W + P max 2ϕW; 0ð Þ+max −ϕP; 0ð Þ+max −ϕWW; 0ð Þ� �

=2+max S Δxð Þ2=Γ; 0
h i
 �

(68)

Similar to the CD scheme, the discretization equation to eliminate overshoots can now be
formulated.

Overshoots:Using equation (46) to eliminate overshoots, equation (67) can be written as:

aE + aW −
P min − 2ϕW; 0ð Þ+min ϕP; 0ð Þ+min ϕWW; 0ð Þ� �

=2+min S Δxð Þ2=Γ; 0
h i
 �

ξ″
�
P

2
4

3
5ξ″P

= aEξ″E + aWξ″E + P max − 2ϕW; 0ð Þ+max ϕP; 0ð Þ+max ϕWW; 0ð Þ� �
=2+max S Δxð Þ2=Γ; 0

h i
 �
(69)

Combined Formulation: A combined formulation that eliminates undershoots and
overshoots can be written by using equation (50) and equation (53) to combine equation (68)
and equation (69) as:

aE + aW −
P min 2ksϕW; 0ð Þ+min − ksϕP; 0ð Þ+min − ksϕWW; 0ð Þ� �

=2+min S Δxð Þ2=Γ; 0
h i
 �

ξ�P

2
4

3
5

ξP = aEξE + aWξW + P max 2ksϕW; 0ð Þ+max − ksϕP; 0ð Þ+max − ksϕWW; 0ð Þ� �
=2+max S Δxð Þ2=Γ; 0

h i
 �
(70)
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Remarks: We presented an example where MUST is used to eliminate undershoots and
overshoots as the results of the source terms. We will next demonstrate MUST on a scheme
where physically unrealistic solutions can be due to negative coefficients and the source terms.

4.3 The QUICK scheme
One possible implementation of the QUICK schemewhen u > 0 is:

ϕe =
6
8
ϕP +

3
8
ϕE −

1
8
ϕW (71a)

ϕw =
6
8
ϕW +

3
8
ϕP −

1
8
ϕWW (71b)

The discretization equation can then be written as:

ρu
6
8
ϕP +

3
8
ϕE −

1
8
ϕW

� �
− ρu

6
8
ϕW +

3
8
ϕP −

1
8
ϕWW

� �
=Γ

ϕE −ϕP

Δx

� �
−

ϕP −ϕW

Δx

� �� 	
+SΔx

(72)

One possible way to write the discretization equation is:

2Γ
Δx

+
6F
8

−
3F
8

� �
ϕP =

Γ

Δx
−

3F
8

� �
ϕE +

Γ

Δx
+

6F
8

� �
ϕW +

F
8
ϕW −

F
8
ϕWW + SΔx (73)

Or

aPϕP = aEϕE + aWϕW +b (74)

where

aE = 1−
3P
8

(75a)

aW = 1+
6P
8

(75b)

aP = aE + aW (75c)

b=
P
8
ϕW −

P
8
ϕWW +

S Δxð Þ2
Γ

(75d)

In this situation, we demonstrate MUST on a scheme where physically unrealistic
undershoots and overshoots can be the results of negative coefficients and/or source terms.
Following our approach for the CD scheme, we will add different forms of zeroes to both
sides of equation (74) as:

½aE + aW + ðjaEj+aEÞ�ϕP = aEϕE + aWϕW + ðjaEj+aEÞϕE +
P
8
ϕW −

P
8
ϕWW +

S Δxð Þ2
Γ

(76)
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Equation (76) can be rewritten as:

ðjaEj+aWÞϕP = jaEjϕE + aWϕW + 2min aE; 0ð Þ ϕE −ϕPð Þ+ P ϕW −ϕWWð Þ
8

+
S Δxð Þ2

Γ
(77)

Undershoots: Similar to the other schemes, using equation (42), equation (77) with MUST
can be written as:

aE + aW −
min 2min aE; 0ð ÞϕE; 0½ �+min − 2min aE; 0ð ÞϕP; 0½ �ð Þ

ξ
0 �
P

"

−
min PϕW=8; 0
� �

+min −PϕWW=8; 0
� �

+min S Δxð Þ2=Γ; 0
h i
 �

ξ
0 �
P

3
5ξ0

P

= aEξ
0
E + aWξ

0
W +max 2min aE; 0ð ÞϕE; 0½ �+max − 2min aE; 0ð ÞϕP; 0½ �

+max PϕW=8; 0
� �

+max −PϕWW=8; 0
� �

+max S Δxð Þ2=Γ; 0
h i

(78)

We will take a pause here to examine the resulting discretization equations for the CD
scheme and the QUICK scheme. Physically unrealistic solutions in the CD scheme are the
result of negative coefficient. The QUICK scheme suffers from undershoots and overshoots
because of negative coefficient and negative sources.

Comparing equation (78) and equation (45), it can be seen that the additional terms due to
negative coefficient is the same for the two spatial differencing schemes. The exact forms of
aE are different.

Overshoots:Using equation (46), equation (77) can be written as:

aE + aW −
min − 2min aE; 0ð ÞϕE; 0½ �+min 2min aE; 0ð ÞϕP; 0½ �ð Þ

ξ″
�
P

"

−
min −PϕW=8; 0
� �

+min PϕWW=8; 0
� �

+min − S Δxð Þ2=Γ; 0
h i
 �

ξ″
�
P

3
5ξ″P

= aEξ″E + aWξ″W +max − 2min aE; 0ð ÞϕE; 0½ �+max 2min aE; 0ð ÞϕP; 0½ �
+max −PϕW=8; 0

� �
+max PϕWW=8; 0

� �
+max − S Δxð Þ2=Γ; 0

h i
(79)

Combined Formulation: A combined formulation for equation (78) and equation (79) can
be written using equation (50) and equation (53) as:

aE + aW −
min 2ksmin aE; 0ð ÞϕE; 0½ �+min − 2ksmin aE; 0ð ÞϕP; 0½ �ð Þ

ξ
0 �
P

"

−
min PksϕW=8; 0
� �

+min −PksϕWW=8; 0
� �

+min Sks Δxð Þ2=Γ; 0
h i
 �

ξ
0 �
P

3
5ξ0

P

= aEξ
0
E + aWξ

0
W +max 2ksmin aE; 0ð ÞϕE; 0½ �+max − 2ksmin aE; 0ð ÞϕP; 0½ �

+max PksϕW=8; 0
� �

+max −PksϕWW=8; 0
� �

+max Sks Δxð Þ2=Γ; 0
h i

(80)
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Remarks: We showed how MUST is used to eliminate undershoots and overshoots due to
negative coefficient and source in the QUICK scheme.

4.4 Monotonic unbounded schemes transformer procedure
TheMUST procedure for u > 0, can be summarized as:

• Starting from the usual discretization equation [equations 7, 66 and 75), check the
sign of aE.

• If aE can be negative, add different zeroes to both sides of the discretization equation
as in equations (39) and (76).

• Subtracting the same terms from both sides as in equations (43), (47), (68), (69), (78)
and (79).

• Rearranging the source terms to eliminate undershoots [equations 45, 68 and 78] and
overshoots [equations 49, 69 and 79].

• Combine into combined formulation for undershoots and overshoots [equations 52,
70 and 80].

The same procedure can be used to derive the discretization equation for u < 0. The
discretization equations for u > 0 and u < 0 can then be combined to write a discretization
equation for all velocities.

4.5 Remarks
We incorporated MUST into three higher-order unbounded schemes to eliminate
undershoots and overshoots. We will test the implementations using different test problems
in the next section.

5. Sample applications of monotonic unbounded schemes transformer
In this section, we will demonstrate MUST’s capabilities. For simplicity of writing, Peclet
number is used to refer to the cell Peclet number. For ease of analyses, and without loss of
generality, we set P > 0. Therefore, in all discussions, the upstream neighbors are ϕWW and
ϕW. The downstream neighbor is ϕE. Extension of MUST to when P < 0 is straightforward
and does not require any new concept, so it is left to the explorations of interested readers.
We divide our discussions into two parts, namely, without sources S = 0 and with sources
S ≠ 0.

5.1 Zero source
The limit value: When there are no sources, as the Peclet number increases, the nodal ϕP

value approaches the value of the upstream neighbor orϕW in this case.
The CD scheme: Figure 5 shows the nodal values of the dependent variable ϕP, predicted

using the exponential scheme [equation (10)], the CD scheme without MUST [equation (7)]
and the CD scheme with MUST [equation (52)]. On the left-side of Figure 5, the upstream
neighbor ϕW is set to 1 and downstream neighbor ϕE is set to 2[3]. Using the exponential
scheme, the nodal ϕP value approaches the upstream neighbor ϕW exponentially as the Peclet
number increases. The CD scheme without MUST does the same and the nodal value ϕP

reaches the upstream neighbor’s value when the critical Peclet number of 2 is reached. After
which, the predicted nodal value falls below the upstream neighbor’s value, which is
physically not possible for this pure convection-diffusion problem. When MUST is applied
to the CD scheme and when the Peclet number is larger than 2, MUST automatically limits
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the nodal value to the upstream neighbor’s value without any ad hoc interventions. The right-
side of Figure 5 shows the nodal ϕP value when ϕW = 2 and ϕE = 1. Overshoots are
encountered with the CD scheme without MUST when the Peclet number is larger than 2.
MUST limits the nodal ϕP values to the upstream neighbor’s values. When the Peclet
number is less than 2, the solutions from CD scheme with MUST and without MUST are
identical. Table 2 shows the same information on the left-side of Figure 5 in tabular format. It
can be seen that MUST sets the nodal value to the upstream neighbor value when the cell
Peclet number is greater than 2. Table 3 shows the convergence history with different ϕP

initial guesses for ϕW = 1 and ϕE = 2 with the cell Peclet number of 3. Although not shown,
when the initial guess is set to ϕW which is the correct answer, the solution converges in one
iteration. Three different initial guesses, namely, ϕ�

P = −ϕE, ϕE and 1,000ϕE are used to
study the convergence history. We examine the last term of the coefficient of ξP in equation
(52) defined as below:

α≡ −
min ks2min aE; 0ð ÞϕE; 0½ �+min − ks2min aE; 0ð ÞϕP; 0½ �ð Þ

ξ�P
(81)

We do not normally drive the solution of the linear equation until converged solution is
obtained during the iteration process. However, this exercise shows the robustness of MUST.
From Table 3, it can be seen that the solutions converge well for all three choices of initial
guesses. Even when a really bad and unlikely initial guess of 1,000ϕE, the solution converges
really well. As α increases, ξ�P ! 0. As a result, ϕP ! ϕlimit. Since the changes between
iterations are not expected to be large, the three initial guesses can be considered
unreasonable guesses. Even then, the solutions converge well.

Remarks: All the above are done automatically without any ad hoc interventions, and
naturally by retaining all terms in the discretization equation of the CD scheme. For the CD
scheme where the critical Peclet number is a constant known a-priori, MUST functions like
the hybrid scheme of Spalding (Spalding, 1972). We will demonstrate MUST’s utilities and
capabilities when the critical Peclet numbers are not constant and unknown a-priori.

SOUD scheme: Equation (66) is used to calculate the nodal ϕP values without MUST.
The nodal ϕP values for SOUD scheme with MUST are calculated using equation (70).
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Unlike the CD scheme where the critical Peclet number is known and equals to 2, the critical
Peclet number for the SOUD scheme is not constant and not known a-priori.

Figure 6(a) shows how MUST predicts the critical Peclet numbers and eliminates
undershoots. In this undershoots study, the upstream neighbor and downstream neighbor are
set to ϕW = 1 and ϕE = 2, respectively. The upstream neighbor of ϕW, namely, ϕWW are set to
3, 2, 1.5 and 1. The ϕWW values are chosen so that the critical Peclet numbers occur around 1,
2, 4 and never. From the figure, we can see that MUSTsets the nodal ϕP value to the value of
the upstream neighbor at the Peclet numbers where undershoots begin with the SOUD
scheme without MUST. Table 2 shows these in tabulated format. It can be seen that
depending on the values of ϕWW, undershoots begin at different Peclet numbers. Without
MUST, the nodal values continue to decrease leading to larger undershoots (red). With
MUST, the nodal value is limited to the upstream value of 1 (blue). From Table 2 and Figure
6(a), for Peclet numbers where there are no undershoots, as expected, the predictions for
SOUD schemewith or without MUSTare identical.

Figure 6(b) shows howMUST removes overshoots. For this demonstration, the upstream
neighbor is set to ϕW = 2, and the downstream neighbor is set to ϕE = 1. The values of ϕWW

are set to 0, 1, 1.5 and 2. Again, these ϕWW values are chosen so that overshoots occur at
around Peclet numbers of 1, 2, 4 and never. Note that these ϕWW are different from the
undershoots study. This shows that MUST can capture the critical Peclet numbers for

Table 2. Nodal ϕP values for the SOUD scheme with ϕW = 1, ϕE = 2 and different ϕWW values

Peclet Expo
ϕWW = 3 ϕWW = 2 ϕWW = 1.5 ϕWW = 1

Normal MUST Normal MUST Normal MUST Normal MUST

0.10 1.48 1.42 1.42 1.44 1.44 1.45 1.45 1.47 1.47
0.20 1.45 1.35 1.35 1.39 1.39 1.41 1.41 1.44 1.44
0.30 1.43 1.29 1.29 1.35 1.35 1.38 1.38 1.41 1.41
0.40 1.40 1.23 1.23 1.31 1.31 1.35 1.35 1.39 1.39
0.50 1.38 1.18 1.18 1.27 1.27 1.32 1.32 1.36 1.36
0.80 1.31 1.06 1.06 1.19 1.19 1.25 1.25 1.31 1.31
0.90 1.29 1.03 1.03 1.16 1.16 1.23 1.23 1.30 1.30
1.00 1.27 1.00 1.00 1.14 1.14 1.21 1.21 1.29 1.29
1.10 1.25 0.97 1.00 1.12 1.12 1.20 1.20 1.27 1.27
1.20 1.23 0.95 1.00 1.11 1.11 1.18 1.18 1.26 1.26
1.80 1.14 0.83 1.00 1.02 1.02 1.12 1.12 1.21 1.21
1.90 1.13 0.81 1.00 1.01 1.01 1.11 1.11 1.21 1.21
2.00 1.12 0.80 1.00 1.00 1.00 1.10 1.10 1.20 1.20
2.10 1.11 0.79 1.00 0.99 1.00 1.09 1.09 1.19 1.19
2.20 1.10 0.77 1.00 0.98 1.00 1.09 1.09 1.19 1.19
4.00 1.02 0.63 1.00 0.88 1.00 1.00 1.00 1.13 1.13
4.10 1.02 0.62 1.00 0.87 1.00 1.00 1.00 1.12 1.12
4.20 1.02 0.61 1.00 0.87 1.00 0.99 1.00 1.12 1.12
4.30 1.01 0.61 1.00 0.86 1.00 0.99 1.00 1.12 1.12
4.40 1.01 0.60 1.00 0.86 1.00 0.99 1.00 1.12 1.12
7.40 1.00 0.51 1.00 0.79 1.00 0.94 1.00 1.08 1.08
7.50 1.00 0.51 1.00 0.79 1.00 0.93 1.00 1.08 1.08
7.60 1.00 0.51 1.00 0.79 1.00 0.93 1.00 1.08 1.08
7.70 1.00 0.51 1.00 0.79 1.00 0.93 1.00 1.07 1.07
7.80 1.00 0.50 1.00 0.79 1.00 0.93 1.00 1.07 1.07

Source: Table by authors
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different combinations of ϕE, ϕW and ϕWW. Similar to undershoots, MUST limits the nodal
values to the upstream neighbor value when SOUD scheme without MUST starts to predict
values higher than the upstream neighbor. Again, when there are no overshoots, the solutions
by SOUD scheme withMUSTcollapse to the solutions of SOUD schemewithout MUST.

The QUICK scheme: Equation (75) is used to calculate the nodal ϕP values for QUICK
without MUST. The nodal ϕP values for QUICK with MUST are calculated using equation
(80). Similar to the SOUD scheme, the critical Peclet numbers at which undershoots and
overshoots begin are not known a-priori and change depending on the combinations of the
values of the dependent variables at the neighboring nodes.

Figure 7(a) shows how MUST eliminates undershoots. In this undershoots study, the
upstream neighbor is set to ϕW = 1, and the downstream neighbor is set to ϕE = 2. The values
of ϕWW are set to 3, 2, 1.5 and 1. The same ϕWW values as those used for the CD scheme are
chosen to demonstrate the ability of MUST to capture undershoots at different Peclet
numbers with the same three ϕW, ϕW and ϕWW nodal values. Unlike the SOUD scheme,
undershoots are observed for all ϕWW values. For these values of ϕWW, undershoots occur in
between 1 < P < 3. We can see again, that MUST set the nodal value ϕP to the value of the
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Figure 6. Values ofϕP using second-order upwind schemewith and without MUST
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upstream neighbor at the Peclet numbers where undershoots begin with the QUICK without
MUST.

Figure 7(b) shows howMUST removes overshoots. For this demonstration, the upstream
neighbor is set to ϕW = 2, and the downstream neighbor is set to ϕE = 1. The values of ϕWW

are set to 0, 1, 1.5 and 2. Similar to undershoots, MUST limits the nodal value to the
upstream neighbor value when QUICK without MUST starts to predict values higher than
the upstream neighbor. Again, for Peclet number before overshoots, the solutions by QUICK
withMUSTcollapse to the solutions of QUICKwithoutMUST.

Remarks:We testedMUSTon three different spatial difference schemes. MUSTwas able
to predict the critical Peclet numbers where undershoots or overshoots begin and limit the
nodal value of the dependent variable to the value of its upstream neighbor. The critical
Peclet number for the CD scheme is known and fixed at 2. The critical Peclet numbers for the
SOUD scheme and the QUICK scheme are functions of the relative values of the neighbors.
MUST predicts these critical Peclet numbers automatically and naturally.

Another point to be noted is the undershoots and overshoots in the CD scheme are due to
the negative neighbor coefficient. In its current implementation[4], the overshoots and
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Figure 7. Values ofϕP using QUICK schemewith and without MUST
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undershoots in the SOUD scheme are due to the source term (equation 66d). The overshoots
and undershoots in the QUICK scheme are due to the combined effects of the negative
neighbor coefficient (equation 75a), and the source term (equation 75d). MUST removes the
undershoots and overshoots as a result of these two factors very well.

In this section, we demonstrated MUST’s ability (1) to predict the critical Peclet numbers
based on the relative values of the neighbors, and (2) to limit the nodal values to the upstream
neighbor’s values. Both undershoots and overshoots were avoided. When the Peclet number
is smaller than the critical Peclet number, MUST’s solutions are identical to the original
discretization equation without MUST.

5.2 Finite source
When the source is zero, the Peclet number is the independent variable. However, when the
source is finite, the Peclet number alone is not sufficient. For ease of discussions, and without
loss of generality, for the remainder of this subsection, we will set Δx = 1 and Γ = 1. With
these, the Peclet number becomes the independent variable. In this subsection, we will study
four cases, namely, (1) ϕWW = 3, ϕW = 1, ϕE = 2 and S = 1, (2) ϕWW = 3, ϕW = 1, ϕE = 2 and
S = –1, (3) ϕWW = 1, ϕW = 2, ϕE = 1 and S = 1 and (4) ϕWW = 1, ϕW = 2, ϕE = 1 and S = –1.

The limit values and the exponential scheme: When the source term is finite, and
constant in a convection–diffusion problem, there is no exact solution even for one-
dimensional problems.We will examine the solutions obtained using the exponential scheme
[equation (10)] and the limit values [equation (37)]. Figure 8 shows the values of ϕP and the
limit values for the four cases. For Case 1, when the Peclet number is zero, and as a result of
the positive source, the nodal value of 2 is larger than the average of ϕW and ϕE, which is 1.5.
As the Peclet number increases, the nodal value ϕP approaches the upstream value of ϕW.
Note that as the source is positive, the nodal value ϕP is approaching but always higher than
ϕW. The limit value which neglects diffusion, on the other hand approaches infinity when the
Peclet number is zero. It decreases inversely with the Peclet number. Both the exponential
scheme value and the limit value are identical at higher Peclet numbers where diffusion does
not play an important role. In Case 2, the same thing is observed when the source is negative.
The two (limit and exponential scheme) values are identical at large Peclet numbers. As a
result of the negative source, the nodal value ϕP is smaller than the upstream value ϕW. As
the Peclet number increases, the nodal value recovers and approaches ϕW Unlike the
exponential scheme, as diffusion is neglected, the limit values approach infinity as the Peclet
number approaches zero. Cases 3 and 4 are similar to Cases 1 and 2.

Case 1 (ϕWW = 3, ϕW = 1, ϕE = 2 and S = 1): We will examine the relation between the
nodal value ϕP and the limit value ϕlimit. Recalling that Δx = 1 and Γ = 1, the limit value
(equation (37)) becomes:

ϕlimit;P =ϕW +
S
P
= 1+

1
P

(82)

With ϕE = 2, the following can be concluded:

P< 1 ϕlimit;P > 2 ϕlimit;P >ϕE

P> 1 ϕlimit;P < 2 ϕlimit;P <ϕE

(83)

Since ϕW < ϕE, we must prevent:
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P< 1 overshoot ϕP ≤ϕlimit;P =1+
1
P

P> 1 undershoot ϕP ≥ϕlimit;P =1+
1
P

(84)

The above applies to all differencing schemes.
Figure 9 shows the predictions of the CD scheme, the SOUD scheme and the QUICK

scheme with and without MUST. Figure 9(a) shows the CD scheme predictions match the
exponential scheme well up to P = 2. For this case, when P > 2, the CD scheme admits
undershoot values. The predictions with MUST are identical to those without MUST when
P ≤ 2. When P > 2, MUST becomes effective. When the nodal value ϕP is less than the limit
value, equation (84) limits the nodal value to the limit values. Figure 9(a) shows the CD
scheme’s predictions withMUSTmatch those of the exponential scheme very well.

Figure 9(a) shows the SOUD scheme without MUST predicts the nodal ϕP values lower
than the limit values for all Peclet numbers. As undershoots are encountered when P < 1 and
according to equation (84), we want to prevent overshoots. Therefore, nodal values lower
than the limit values were admitted as solutions. As a result, the SOUD scheme with MUST
follows the SOUD scheme without MUST until P = 1. After this point, MUST ensures that
there is no undershoot and predicts nodalϕP values according to equation (84).

Similar to the SOUD scheme, the QUICK scheme without MUST predicts nodal ϕP

values lower than the limit values for all Peclet numbers. Once MUST is activated, the nodal
ϕP values are set to the limit values.

Case 2 (ϕWW = 3, ϕW = 1, ϕE = 2 and S = –1): We will examine the relation between the
nodal value ϕP, and the limit value ϕlimit. Recalling that Δx = 1 and Γ = 1, the limit value
(equation (37)) becomes:

ϕlimit;P =ϕW +
S
P
= 1−

1
P

(85)

With ϕE = 2, the following can be concluded:

P< 1 ϕlimit;P < 0 ϕlimit;P <ϕE
P> 1 0<ϕlimit;P < 1 ϕlimit;P <ϕE

(86)
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Since ϕW < ϕE, we must prevent:

P< 1 undershoot ϕP ≥ϕlimit;P =1−
1
P

P> 1 undershoot ϕP ≥ϕlimit;P =1−
1
P

(87)

The above applies to all differencing schemes.
Figure 9(b) shows the results for the three schemes tested in this article. At small Peclet

numbers, all three schemes predicted values lower than the exponential scheme but higher
than the limit value. Once the values of the different schemes intersect the limit values,
MUST ensures that the solutions of the various schemes are limited to the limit values;
removing undershoots in the process. As Peclet number increases, all solutions (including
the exponential scheme) match the limit values. This is because the contribution from the
diffusion term diminishes with increasing Peclet number.

Case 3 (ϕWW = 1, ϕW = 2, ϕE = 1 and S = 1): With Δx = 1 and Γ = 1, the limit value
[equation (37)] becomes:

ϕlimit;P =ϕW +
S
P
= 2+

1
P

(88)
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With ϕE = 1, the following can be concluded:

P< 1 ϕlimit;P > 2 ϕlimit;P >ϕE
P> 1 ϕlimit;P > 2 ϕlimit;P >ϕE

(89)

Since ϕW > ϕE, we must prevent:

P< 1 overshoot ϕP ≤ϕlimit;P =2+
1
P

P> 1 overshoot ϕP ≤ϕlimit;P =2+
1
P

(90)

The above applies to all differencing schemes.
From Figure 10(a), it is clear that at small Peclet numbers, the CD scheme and the

QUICK scheme produce solutions that are larger than the exponential scheme. At small
Peclet numbers, all three schemes produce solutions which are smaller than the limit values.
Therefore, some solutions larger than the exponential scheme (but smaller than the limit
values) are admitted. Once the solutions (by the different schemes) intersect the limit values,
MUST limits the solutions to the limit values eliminates uncontrolled overshoots.

Case 4 (ϕWW = 1, ϕW = 2, ϕE = 1 and S = –1): With Δx = 1 and Γ = 1, the limit value
[equation (37)] becomes:

ϕlimit;P =ϕW +
S
P
= 2−

1
P

(91)

With ϕE = 1, the following can be concluded:

P< 1 ϕlimit;P < 1 ϕlimit;P <ϕE

P> 1 ϕlimit;P > 1 ϕlimit;P >ϕE

(92)

Since ϕW > ϕE, we must prevent:

P< 1 undershoot ϕP ≤ϕlimit;P =2−
1
P

P> 1 overshoot ϕP ≤ϕlimit;P =2−
1
P

(93)

Similar to the other three cases, it can be seen from Figure 10(b) that at small Peclet numbers
the solutions with MUST are identical to those without MUST. As Peclet numbers increase,
MUST prevents overshoots and limits the nodal values to the limit values.

6. Concluding remarks
We presented an approach to monotonize unbounded higher-order/upwind schemes which
we call MUST. We demonstrated MUST using the CD scheme, the SOUD scheme and the
QUICK scheme.

For problems with zero sources, the limit value of the nodal point is the value of the
upstream neighbor. In our tests, MUST is able to (1) capture the critical Peclet numbers,
(2) eliminates undershoots and overshoots by setting the nodal value to the value of its
upstream neighbor. For Peclet numbers below the critical Peclet numbers, the solutions
obtained using MUST are identical to the solutions without MUST. This is accomplished
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for known constant critical Peclet number (CD scheme) and unknown Peclet numbers
which depends on the relative values of ϕWW, ϕW and ϕE (SOUD scheme and QUICK
scheme).

For problem with finite sources, a limit value is proposed to demonstrate the capability of
MUST. Other limit values can of course be formulated. Again, below the critical Peclet
numbers, solutions with MUST are identical to those without MUST. Beyond the critical
Peclet numbers, MUST sets the nodal values to the limit values and eliminates uncontrolled
overshoots and undershoots.

The above is achieved automatically and without ad hoc intervention. We also
accomplished this naturally by keeping all the terms in the discretization equation of the
unbounded schemes.

Notes

1. In this article, sink is understood to be negative source. Therefore, source implies positive and
negative sources.

2. There is also question if the upstream value is the right limiting value for ϕP.

2.0

2.1

2.2

2.3

2.4

2.5

2.6

0 5 10 15 20 25 30

P

Peclet Number

10/00 5 10/05 105

Limiter
Expo Scheme
No MUST
With MUST

QUICKSOUDCentral

1.0

1.2

1.4

1.6

1.8

2.0

0 5 10 15 20 25 30

P

Peclet Number

10/00 5 10/05 105

Limiter
Expo Scheme
No MUST
With MUST

QUICKSOUDCentral

Notes: (a) Case 3 – S = –1; (b) Case 4 – S = 1

Source: Figure by authors

(a)

(b)

Figure 10. Values ofϕPwithϕWW = 1,ϕW = 2 andϕE = 1
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3. Neighbor values of 1 and 2 (instead of 0 and 1) are used to show MUST’s capabilities to set the
nodal value to any generic value rather than zero.

4. Although not shown, but we tried other implementations [see (10, 11)], the same conclusion can
be made.
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Appendix
In this Appendix, we present results for a two-dimensional problem to show the generality of MUST
to eliminate undershoots. The inclusion of the complete formulations for two-dimensional problems
with proper explanations is not attempted in this article as it will dilute the focus of this article.
Furthermore, even in today’s situations, one-dimensional formulations are used in many practical
modeling. As a result, the complete two-dimensional MUSTwill be presented in a follow-up article.

There are no new concepts in the formulation of two-dimensional discretization equation using
MUST. Therefore, it is not discussed here. The key is in the formulation of the limiter value. For a
two-dimensional Cartesian-coordinates control volume shown in Figure A1 with u > 0, v > 0 and
without source, the limiter value becomes:

ϕlimit =
ρuΔyð ÞwϕW + ρvΔxð ÞsϕS

ρuΔyð Þw + ρvΔxð Þs
(A1)

The limiter value in Eq. (A1) is the mixing-cup value.
Table A1 shows the results for the simplest steady, two-dimensional convection–diffusion

problem without source. We examined the exponential scheme, the upwind scheme, the hybrid
scheme, the CD scheme with and without MUST, a SOUD scheme with and without MUST and the
QUICK scheme with and without MUST. For this test problem, we set u > 0, v > 0 and the cell Peclet
number (Pe) in both coordinate directions to be equal. The values of the immediate upstream
neighbors are set to ϕW = 1 and ϕS = 1.5. According to equation (1), the limiter value is 1.25. The
downstream neighbors are set to ϕE = 2 and ϕN = 2. The two other upstream neighbors are set to
ϕWW = 1 and ϕSS = 2.5. The exponential scheme predicts the correct large cell Peclet number limiter
value when the cell Peclet number reaches 5.2. The upwind scheme approaches the limiter value
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slower than the exponential scheme. As expected, the hybrid scheme set diffusion to zero and predicts

the limiter value when the cell Peclet number reaches 2. The CD scheme predicts values below (red)

the limiter value of 1.25 when the cell Peclet number exceeds 2. The CD scheme with MUST
eliminates the undershoot (ϕP < 1.25) starting from cell Peclet number of 2 (blue). Unlike the CD

scheme where the starting point of the undershoot is known, undershoots (red) in the SOUD scheme
begin when the cell Peclet number reaches 3.2. The onset of undershoots is not fixed and known a

priori as in the CD scheme. The onset depends on the relative values of the four upstream neighbors,

and the two downstream neighbors. SOUD scheme with MUST predicts the onset of undershoot and
eliminates undershoots (blue). A similar trend is observed for the QUICK scheme. Here the

undershoots begin at cell Peclet number of 2.3.
For this simple test problem, MUST (1) predicts the same solutions (as those without MUST)

before the onset of undershoots, (2) determine the onset of undershoots automatically and naturally,

(3) set the nodal value to the limiter value once undershoot starts and (4) predicts the correct large cell

Peclet number limit.

Source: Figure by authors

Figure A1. Two-dimensional control volume
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Table A1. Nodal ϕP values using different schemes with and without MUSTwith ϕW = 1, ϕE = 2,
ϕS = 1.5, ϕN = 2, ϕWW = 1, ϕSS = 2.5, and the same Peclet number in both coordinate directions

Peclet Expo Upwind Hybrid
Central Second-order upwind QUICK

Normal MUST Normal MUST Normal MUST

0.10 1.61 1.61 1.61 1.61 1.61 1.59 1.59 1.60 1.60
0.20 1.59 1.59 1.59 1.59 1.59 1.55 1.55 1.58 1.58
1.00 1.45 1.50 1.44 1.44 1.44 1.39 1.39 1.42 1.42
1.10 1.44 1.49 1.42 1.42 1.42 1.38 1.38 1.40 1.40
1.20 1.42 1.48 1.40 1.40 1.40 1.37 1.37 1.39 1.39
2.00 1.34 1.44 1.25 1.25 1.25 1.30 1.30 1.27 1.27
2.10 1.33 1.43 1.25 1.23 1.25 1.29 1.29 1.26 1.26
2.20 1.33 1.43 1.25 1.21 1.25 1.29 1.29 1.25 1.25
2.30 1.32 1.42 1.25 1.19 1.25 1.28 1.28 1.24 1.25
2.40 1.31 1.42 1.25 1.18 1.25 1.28 1.28 1.22 1.25
2.50 1.31 1.42 1.25 1.16 1.25 1.27 1.27 1.21 1.25
3.00 1.29 1.40 1.25 1.06 1.25 1.25 1.25 1.16 1.25
3.10 1.28 1.40 1.25 1.04 1.25 1.25 1.25 1.15 1.25
3.20 1.28 1.39 1.25 1.03 1.25 1.24 1.25 1.14 1.25
3.30 1.28 1.39 1.25 1.01 1.25 1.24 1.25 1.13 1.25
3.40 1.27 1.39 1.25 0.99 1.25 1.24 1.25 1.12 1.25
5.00 1.26 1.36 1.25 0.69 1.25 1.20 1.25 1.00 1.25
5.10 1.26 1.36 1.25 0.67 1.25 1.20 1.25 0.99 1.25
5.20 1.25 1.35 1.25 0.65 1.25 1.19 1.25 0.99 1.25
5.30 1.25 1.35 1.25 0.63 1.25 1.19 1.25 0.98 1.25
5.40 1.25 1.35 1.25 0.61 1.25 1.19 1.25 0.98 1.25

Source: Table by authors
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