To read this content please select one of the options below:

Recovery-based error estimator for the natural-convection problem based on penalized finite element method

Lulu Li (College of Mathematics and Systems Science, Xinjiang University, Urumqi, P.R. China)
Haiyan Su (College of Mathematics and Systems Science, Xinjiang University, Urumqi, P.R. China)
Jianping Zhao (College of Mathematics and Systems Science, Xinjiang University, Urumqi, P.R. China)
Xinlong Feng (College of Mathematics and Systems Science, Xinjiang University, Urumqi, P.R. China)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 9 October 2019

Issue publication date: 21 November 2019

89

Abstract

Purpose

This paper aims to proposes and analyzes a novel recovery-based posteriori error estimator for the stationary natural-convection problem based on penalized finite element method.

Design/methodology/approach

The optimal error estimates of the penalty FEM are established by using the lower-order finite element pair P1-P0-P1 which does not satisfy the discrete inf-sup condition. Besides, a new recovery type posteriori estimator in view of the gradient recovery and superconvergent theory to deal with the discontinuity of the gradient of numerical solution.

Findings

The stability, accuracy and efficiency of the proposed method are confirmed by several numerical investigations.

Originality/value

The provided reliability and efficiency analysis is shown that the true error can be effectively bounded by the recovery-based error estimator.

Keywords

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper.

Citation

Li, L., Su, H., Zhao, J. and Feng, X. (2019), "Recovery-based error estimator for the natural-convection problem based on penalized finite element method", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 29 No. 12, pp. 4850-4874. https://doi.org/10.1108/HFF-03-2019-0184

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles