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Abstract

Purpose — The purpose of this paper is to show a comparative study of different direction-of-arrival (DOA)
estimation techniques, namely, multiple signal classification (MUSIC) algorithm, delay-and-sum (DAS)
beamforming, support vector regression (SVR), multivariate linear regression (MLR) and multivariate
curvilinear regression (MCR).

Design/methodology/approach — The relative delay between the microphone signals is the key attribute for
the implementation of any of these techniques. The machine-learning models SVR, MLR and MCR have been
trained using correlation coefficient as the feature set. However, MUSIC uses noise subspace of the covariance-
matrix of the signals recorded with the microphone, whereas DAS uses the constructive and destructive
interference of the microphone signals.

Findings — Variations in root mean square angular error (RMSAE) values are plotted using different DOA
estimation techniques at different signal-to-noise-ratio (SNR) values as 10, 14, 18, 22 and 26dB. The RMSAE
curve for DAS seems to be smooth as compared to PR1, PR2 and RR but it shows a relatively higher RMSAE at
higher SNR. As compared to (DAS, PR1, PR2 and RR), SVR has the lowest RMSAE such that the graph is more
suppressed towards the bottom.

Originality/value —- DAS has a smooth curve but has higher RMSAE at higher SNR values. All the techniques
show a higher RMSAE at the end-fire, i.e. angles near 90°, but comparatively, MUSIC has the lowest RMSAE
near the end-fire, supporting the claim that MUSIC outperforms all other algorithms considered.
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1. Introduction

The determination of the direction-of-arrival (DOA) of an acoustic signal is a problem that
is studied under the ambit of localization and tracking. It has applications in various
domains, namely, robotics, where unmanned vehicles have to move in an unexplored/new
environment, radar systems for aerial/underwater target tracking, sonar system,
surveillance system, where a camera needs to align to a direction from where sound is
coming (Johnson and Dudgeon, 1993; Godara, 1997; Asaei et al., 2016; Bekkerman and
Tabrikian, 2006; Zhao et al, 2010, 2012; Clark and Tarasek, 2006; Bechler et al., 2004;
Argentieri and Danes, 2007; Xiao et al., 2014; Delikaris-Manias et al., 2016; Zhang et al.,
2008). The DOA estimation is challenging, as there is a certain distortion in the acquired
signals, the possible reasons being sensor noise, ambient noise, non-uniformity in array
elements, reverberation, interferences or a combination of these impairments. The
presence of distortion causes inaccurate estimation of DOAs of an acoustic source.
Techniques for DOA estimation with small errors in the presence of impairments use
different acoustic vector sensors and microphone/sensor array configurations (Bogaert
et al, 2011; Wajid et al., 2017a, b, 2019, 2020a, b; Yadav et al., 2020; Alam ef al., 2021; Liu
et al, 2019). The DOA estimation techniques are classified as based on regression,
beamforming and subspace method. delay-and-sum (DAS), minimum-variance-
distortionless-response (MVDR) and fast-fourier transform-effective aperture
distribution function (FFT-EADF) are present under the subcategory of the
beamforming method. Polynomial-regression of order 1 (PR1), Polynomial-regression of
order 2 (PR2), support vector regression (SVR), ridge-regression (RR) are under regression
techniques. Multiple signal classification (MUSIC), root MUSIC, estimation of signal
parameters via rotational invariance technique (ESPRIT), etc. algorithms are present
under the subcategory of the subspace method (Shi, 2019; Cui et al., 2019; Gupta et al., 2020;
Varma, 2002; Zhou et al., 2017; Tang et al., 2014). DOA estimation has paved its path from
early methods where narrow beams are steered in a particular direction for knowing the
incident angle. Digital signal processors have been used as an approach for finding the
direction. Methods such as subspace decomposition, analysis of eigen values and
compressed sensing-based methods are playing an important role in achieving better
performance in terms of speed, accuracy and robustness (Ge et al,, 2021; Zhang et al., 2021).

Understanding the wide range of applications for DOA estimation, the increased variety
of sensor configurations, and the wide knowledge of constraints implied by the hardware, the
research into DOA estimation strategies has continued uninterrupted. Recently, new
approaches based on deep neural networks (DNNs) for many speech sources localization
using an array of smaller dimensions. These techniques result into high-resolution DOA
estimation. DNNs, amongst the data-driven methods, show the potency for high precision
DOA estimation. The recent deep learning technology undergo heavy analysis, proving the
importance of DOA estimation; various combinations of convolutional neural network and
deep neural network are taken into account. The evaluation criteria include root mean-
squared error, accuracy and mean absolute error. They evaluate this new deep and machine
learning technology in DOA estimation, and various factors (signal-to-noise ratio, number of
snapshots, number of antennas and number of signal sources) affecting DOA estimation are
also processed. Based on findings, it is being believed that advanced technologies like deep
learning has improved the direction-finding techniques to a greater extent. Such kind of study
helps researchers to conduct detailed analysis (Ge ef al, 2021; Zhang et al., 2021).

This paper is divided into the following sections. Section 2 presents the signal model for
the uniformly linear array. Section 3 briefly describes the different direction-finding
techniques. In Section 4, simulation parameters and results are presented and analysed,
Section 5 concludes the paper.
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Figure 1.

Uniform linear array of
microphones with
M=4and D=1,
where the filled
triangles represent the
microphones. Assume
that the sound source is
in the far-field

2. Signal model for uniform linear array

A uniform linear array (ULA) of M number of microphones is used as a receiver, where two
adjacent array microphones are separated by a distance, d. Let there are D number of far-field
acoustic sources and transmitted signal, s; (¢), a narrowband signal. Figure 1 depicts the far-
field sound source and a ULA of microphones with M = 4 and D = 1. Assuming a single
sound source in the far-field and the wavelength of the incoming signal is A;, which arrives at
an angle 0; with respect to the y-axis and in the clockwise direction. Thus, the equation of the
signal received by the /th microphone is expressed as

7i(t) = s (B)e PO O Lypy, (i=1,2, ..., M), 1)

where ¢77%) is the phase component which is common to all microphones signal and
introduced due to wave travel from the sound source (at an angle 6) to the first microphone of
ULA,and §(0) = 2x(i—1) % sin 6, 1s called additional phase difference caused by the path
difference between the first microphone and the ;th microphone. #;(¢) represents the AWGN
at the sth microphone.

Additive white Gaussian noise (AWGN) has been used to represent the inherent noise of
microphone sensor and electronics system noise, ambient noise, etc. Now, (1) can also be
rewritten in the matrix form and is given by Wajid et al (2020c)

r(£) = A(0)s(t) +n(t)

)
=[n(t) n)... m®],
where
s(t) = [s.(H)e @ sy(H)e @) ... sp(t)eron ], 3
1 1 1
e—f‘ﬁ2(91) e P(02) g7 Pa(0D)
A((‘)) = : : : : ) @
GO i@ i Pu6n)

n(t) is a vector representation of AWGN and [.]" denotes the transpose, A(8) is the
Vandermonde structure of the array steering matrix A(0) (matrix order M X D). The

N
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correlation matrix R,, (having M rows and M columns) of microphone’s signal vector, r(t), is
expressed in the following equation (Wajid et al, 2020c)
R, = E[r()r" (1)]

_ A(ORA"0) + N, ©

where, ] denote the conjugate-transpose and E[.] denote the ensemble average. Similarly,
(say) Rsand N, represents signal and noise correlation matrices, respectively. Therefore, they
can be expressed as follows:

R, = E[s(t)s" ()] ©)
and
N, = E[n(t)n” (1)]. @

Since the noise realizations are mutually uncorrelated, so their cross-correlation is zero and all
noise realizations will have the same variance. Thus, Ny, is expressed as

N, = oI @®)

where 62 is the variance of zero-mean AWGN and Iis the identity matrix. Substituting value
of N, from (8) into (5) results in the following equation (Wajid et al, 2020c).

R, = A(O)RA"(0) + 6’1 ©)

3. Techniques of the direction of arrival estimation

There are many existing techniques of DOA estimation, which can be categorized based
on three broad approaches, (1) regression modelling, (2) classical beamformer and (3)
subspace methods, which are shown in Figure 2. This paper presents the extension work of
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Figure 2.

Direction of arrival
estimation techniques
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Wajid et al. (2020c). In this paper, we have compared polynomial regression, RR and SVR,
DAS beamforming with the subspace technique, i.e. MUSIC algorithm for DOA estimation.
The details of the direction-finding techniques among which comparison has been made are
given in the subsequent subsections.

3.1 Regression technique

Regression is a statistical method that attempts to determine the nature and degree of
relationship between a dependent variable based on many independent variables. The nature
of the relationship is produced in the form of a mathematical model (equation) between the
predictors and response. The coefficients in the mathematical model are found by undergoing
training of parameters. The training process aims at reducing the error distance between the
predicted and the actual values in the training by using the best-fit parameters to adapt to the
training set. The error estimate between the predictors and response is assessed by the least-
squares method in this work. This error is given by the following equation:

1) o =\
Error = <%) > <Yi - Yl) (10)

where Y is the vector of observed values and Y is the set of predicted values and # is the
number of predictions. The regression techniques require the identification of the features
derived from the independent variables. These features are then used as an input to identify
the mathematical model that is to be determined.

In this work, we have used Pearson Product-Moment—Correlation—Coefficient (PPMCC)
as the feature that is taken as the input in the training of the mathematical model. PPMCC is
the degree of association or dissociation between two variables. If a variable increases with
the increase in the other variable, then the correlation between the two variables is +1. If the
variable decreases with the increase in another variable, then the coefficient is —1. The rest of
the values lie between +1 and —1 commensurate with the degree of association between the
variables. As a feature, PPMCC is calculated on each signal pair acquired at each microphone.
The PPMCC thus calculated between each microphone pair is indicative of the phase
difference between the sinusoidal waves received at each microphone. The phase difference
occurs due to a certain time delay in the reception of signals in the ULA of the microphones.
Different regression techniques used are discussed as follows:

3.2 Polynomial-regression of order 1 and order 2

Polynomial-regression or linear-regression is the simplest machine learning algorithm that
can be used for estimating the DOA which is given in (11). If Z = 1 and % = 2, then they are
denoted with PR1 and PR2, respectively.

y = by+bix + bzxg—i—...—i- bkxi—&—c 11)

where X = [x1243 45 . . . %3] is the input vector, b = [b1b2 b5 ... b;] is a vector that consists of
weights for different input vectors, ¢ is a constant and y is the output vector that is dependent
on x.

3.3 Support-vector-regression (SVR)

SVR model uses a non-linear model for the estimation of DOA which is trained to relate the
input correlation—coefficient features and the output DOA. It uses the Vapnik—Chervonenkis
theory of support vectors to form a relationship between predictors and response. Assuming
that the predictor variable is denoted by variable x and the variable of importance, the



dependent response variable is denoted by G(x). The variable x encompasses all the
individual variables that would determine G(x) after training. xis ‘e’ dimensional indicating
that ‘a’ independent variables are used for prediction. It is defined as follows:

XT = [xla X2y weey xa]' (12)

A general-regression technique requires that the order of the relationship between the
predictors and response be predetermined before the training process. The order of
relationships could be linear or polynomial. This pre-ascertained relationship hinders the
establishment of a mathematical model that is closer to the actual values, as the real
relationship could be of scores of a different order than surmised on the proposed order of the
polynomial. SVR has a different methodology for determining this mathematical model. To
identify a closer model, it uses a kernel function that projects the input variable to an infinitely
high dimensional space, with other dimensions as derived dimensions of the input space. To
fine-tune the model, the training is performed on a set of known predictor and response
values. At the end of the training process, a linear hyperplane is identified in this high
dimension that helps minimize the prediction error. The hyperplane thus identified is linear in
the high-dimensional derived input space but it is non-linear when projected back in the ‘a’
dimensional input space. The process of projecting in the high dimension and then projecting
it back in the input space relieves us from predetermining the order of the mathematical
model before the training process, thus helping in the establishment of a closer relationship
between predictors and response.

Radial basis function (RBF) is a popular function that is used for transforming the input
space to a high-dimensional space. This RBH has been used in our experimental work. Its
mathematical equation is given as follows:

K(x, X) = exp(—y|x - x’\z), y>0 (13)

where x and x’ are all vectors in feature space R?. The function in (13) on expanding
reveals that it has an infinitely high number of dimensions. The final value that
computes ranges from 0 to 1. The final value thus computed is commensurate with the
distance |x—x'|. To establish a close relationship between predictors and response,
multiple linear regression is performed with each variable being the derived dimension
in the projected higher dimension. The established mathematical model forms a hyper
tube of predicted values in the high-dimension space such that it rotates around the
actual values. The linear regression is trained on a set of known values such the overall
loss is minimized.
The estimation is measured using a loss-function given by the following equation:

_f0 i —fx W< e
L, flx, w) = { v — F(x, )| — & otherwise. 14
This function is an e-insensitive loss function that forms a tube of width e such that if the
predicted value is in its periphery, then the loss is 0 otherwise the loss is the measure of distance
between the predicted value and the tube periphery. The training process performs a linear
regression on this high-dimensional feature space and an initially haphazard and high-width
tube. The training process then reduces the width of this tube. This is done by minimizing the
loss between the predictors and the response using the above-mentioned e-insensitive loss

function. It minimizes the parameter, min{ ||w| *, where w is the vector normal to the tube. The

emphasis is on finding the most flattened tube such that most of the predictions lie within its
boundaries (Awad and Khanna, 2015; Alam ef al, 2021; Drucker ef al, 1997).
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3.4 Ridge-regression

RR is used to eradicate some of the drawbacks of the linear regression technique. This
technique is for the analysis of multiple regression data in which data has the issue of
multicollinearity, in which there is the existence of non-linear relationships among the
independent variables. In the case of occurrence of multicollinearity, the linear regression
estimates are unbiased but the value of variance for different inputs are so large that the
estimated value would be far from the actual value. By adding a percentage of bias to this
technique, it reduces the percentage of error and thus RR provides more suitable results.

3.5 Beamforming technique

DAS algorithm is a beamforming technique that estimates DOA using signal power,
Ppas(0). The DOA is estimated by searching for the values of 0 for which Pp4s(6) show
peaks (Awad and Khanna, 2015; Alam et al,, 2021; Drucker et al., 1997). Ppas(6) is defined as
follows:

Ppas(0) = @ (O)Rea (0) (15)

where a (6) contains the look-angle vector of ULA. The look angle vector a (8), scans for all
possible values of DOA angles to evaluate the estimated values of DOA (Awad and
Khanna, 2015).

3.6 Subspace algorithm-based DOA estimation

MUSIC algorithm is a subspace algorithm that uses data collected from ULA to estimate
covariance matrix to form subspaces. The steering vector is imposed on the noise-only
subspace which leads to the formation of the pseudo-spectrum, the number of peaks in the
pseudo-spectrum represents the number of sources and the angular value at which peaks
occur is the estimated DOA (Zhang ef al,, 2021). The eigen-decomposition is used to separate
noise subspace and signal subspace. In this algorithm, eigen-decomposition is performed for
covariance matrix for any output data of the ULA. This decomposition results in the formation
of signal-plus-noise and noise-only subspace. These resulting subspaces will be orthogonal to
each other. Later in the algorithm, the orthogonality property is exploited using a steering
vector which forms a spectrum function. In the pseudo-spectrum function, we search for peaks,
and the corresponding angle at which this peak occurs becomes the estimated DOA (Ahmad
and Zhang, 2016; Liao and Abouzaid, 2014). Implementation of MUSIC algorithm is as follows:

(1) Estimation of covariance matrix from the signal vector acquired by ULA. In practice,
R, is estimated by averaging over snapshots (V). These snapshots are output data of
M-microphones of ULA captured N time instances

N 1 N
R, =+ Zn:]rn.rf (16)

where r,, (order M X 1) is the output of M-sensors at #th time instant.

(2) The second step involves the eigen-decomposition of the estimated covariance
matrix, R,, with the assumption that R,, is a non-singular matrix. R,, being an
M X M matrix results in M eigenvalues and corresponds to M eigenvectors.

(3) The third step is the formation of subspaces. The eigenvalues obtained from the
second step are used. Among M eigenvalues, the first D number of larger eigenvalues
forms eigenvectors which represent signal-plus-noise subspace. The rest of M — D
eigenvalues and associated eigenvectors represent noise-only subspace Q,,. If
eigenvalues are



M >A>A>...> y,
and their corresponding eigenvectors (column vector of @,,) are
V1 >0 >03>...>0y.

Thus, noise subspace becomes

Q. =[vps1 Upi2... Uy ] an

(4) Formation of the pseudo-spectrum is done by projecting look angle vector on the
noise subspace (i.e. a” (0)@Q,,) and is given by

1 1

PO)=— p T~ 40)Q.Q"a(6)
0)Q,(«" 0,

(18)

Scan the pseudo-spectrum by varying the value of 8, for peaks. For multiple sources, multiple
peaks are observed, the corresponding number of values of @ are the estimated DOAs (Ahmad
and Zhang, 2016; Liao and Abouzaid, 2014).

4. Simulation environment and results

The properties of the sound wave propagating in the air medium are assumed to be quiescent,
isotropic and homogeneous. The microphones are placed along the x-axis in a uniform linear
manner. Beam patterns of the microphone array are assumed to be omnidirectional. The
separation “d” between each of them is 10 cm. A point-sized single sound source is placed at a
far distance which is transmitting a sinusoidal signal of frequency 1 kHz and traveling at a
speed of sound in air which happens to be 343 m/s. It is assumed that the source is transmitting
signals from the far-field. The sampling rate of 48 kHz is chosen for the received signal and the
signals are recorded for the duration of 25 ms. The attenuation of signals which are impinging
on the microphone surface is not considered in this analysis. The measurements of the DOA are
done in the clockwise direction w.r.t. the positive y-axis. A zero-mean white Gaussian noise is
added in the received signal vectors with different values of SNR. For every DOA angle, a total
of 2,000 independent noisy-signal vectors have been used out of which 1,400 are used for
training of the regression model and 600 are used for the testing purpose of the model, for SNR
values ranging from 26 to 10 dB, decrementing by 4 dB at each step (Awad and Khanna, 2015).

For training, data of the 46-ary system is used where DOA varies from 0° to 90° with steps
of 2°. For testing of the trained models, 91-ary system has been used, where DOAs range from
0°t0 90° in steps of 1°. Training has been performed on the signal acquired at the microphones
of ULA with SNR = 26 dB with 1,400 independent realizations at each DOA; however, testing
has been performed on the signal acquired with SNR = 10, 14, 18, 22 and 26dB with 600
independent realizations at each DOA. PPMCC on a combination of any two of the
microphones for each vector has been calculated and has been used as the feature in the
training and testing of regression models.

DAS and MUSIC have also been applied on the ULA microphone signals corresponding to
SNR = 10 dB, 14 dB, 18 dB, 22 dB and 26 dB with 600 independent realizations at each DOA
0°-90° in steps of 1° (91-ary). The spatial scanning/searching of peaks w.r.t. 8 is done with a
step size of 0.1° in the range of DOA from 0° to 90° as per (15) and (18).

The metrics root mean square angular error (RMSAE) and average root mean square

angular error (RMSAE) have been used to evaluate the performance of direction-finding
techniques. These evaluation metrics are expressed in (19) and (20)
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Figure 3.

RMSAE versus actual-
DOA for the (a) SVR, (b)
RR, (c) PR1, (d) PR2, (¢)
DAS and (f) MUSIC
algorithm. Training of
regression model is
done at 26dB SNR and
testing is done at
26dB SNR

Figure 4.

RMSAE vs actual- DOA
for the (a) SVR, (b) RR,
(¢) PR1, (d) PR2, (e)
DAS and (f) MUSIC
algorithm. Training of
regression model is
done at SNR = 26dB
and testing is
performed at

SNR = 22dB

Figure 5.

RMSAE vs actual- DOA
for the (a) SVR, (b) RR,
(c) PR1, (d) PR2, (e)
DAS, and (f) MUSIC
algorithm. Training of
regression model is
done at SNR = 26dB
and testing is
performed at

SNR = 18dB

N
2in

)

RMSAE(6) = v

19)

where @ is the estimated angle obtained using ith realization of the actual angle, N(=600) is
the total number of times a source was at 8;. The formula of RMSAE can be written as follows:

1 &

RMSAE =
Nr =

RMSAE(6) (20)

where N7 is the total number of possible actual-DOAs in a given ary (for 91-ary, Ny = 91).

In Figures 3-8, graphs represent the result of DOA estimation using different DOA
estimation techniques that were tested with 600 independent realizations at different SNR
values as described above. Each of Figures 3-7 shows variations in RMSAE values with
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different SNR values as 10, 14, 18, 22 and 26dB, for 600 independent realizations for every
value of SNR. Figure 8 represents the comparison of the mentioned DOA estimation
techniques in terms of RMSAE for signals acquired at each of the SNR. It can be observed
from Figures 3 to 7 that the RMSAE curve for RR and PR1 seems to be overlapping, with
considerably more lobes than other techniques. They also reveal to have higher SNR on
average as compared with other techniques. PR2 follows a similar pattern of a higher number
of lobes but shows lesser RMSAE for all SNR values considered. The RMSAE curve for DAS
seems to be smooth as compared to PR1, PR2 and RR but it shows a relatively higher RMSAE
at higher SNR values (14, 18, 22 and 26dB). As compared to (DAS, PR1, PR2 and RR), SVR has
the lowest RMSAE such that the graph is more suppressed towards the bottom. SVR also
shows much fewer lobes than other regression techniques. The lobes in the RMSAE curve are
not indicative of a good machine learning model as the predicted DOA may have a higher
error for a randomly tested angle. A common observation among all the machine learning
methods and DAS is that the RMSAE is considerably higher towards the end-fire, i.e. angles
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Figure 6.

RMSAE vs actual-DOA
for the (a) SVR, (b) RR,
(¢) PR1, (d) PR2, (e)
DAS and (f) MUSIC
algorithm. Training of
regression model is
done at SNR = 26dB
and testing is
performed at

SNR = 14dB

Figure 7.

RMSAE vs actual-DOA
for the (a) SVR, (b) RR,
(c) PR1, (d) PR2, (e)
DAS and (f) MUSIC
algorithm. Training of
regression model is
done at SNR = 26dB
and testing is
performed at

SNR = 10dB

Figure 8.

RMSAE for the (a)
SVR, b)RR, () PR1, (d)
PR2, (e) DAS and (f)
MUSIC algorithm. The
training of regression
models is done at

SNR = 26dB, and the
testing is performed at
SNR values ranging
between 10 and 26dB
with an increment

of 4dB
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near 90°. MUSIC algorithms prove to be the best, having the lowest RMSAE among all the
algorithms considered. It also has the least number of lobes as compared to other techniques.
Even close to the end-fire where all other techniques have large RMSAE, the MUSIC
algorithm shows a small RMSAE value.

It can be inferred from Figure 8 that the cumulative/average of RMSAE for MUSIC is the
least when compared with other techniques. In fact, RMSAE for MUSIC is much lower when
compared with other techniques for all SNR values. Other than MUSIC techniques, SVR
performs better with lower RMSAE at all SNR values as compared with other methods. PR2
performs better than PR1 and RR.

5. Conclusion
A comparative analysis of multiple techniques of DOA estimation, namely, SVR, RR, PR1,
PR2, DAS and MUSIC, have been performed in this work. It has been revealed from the
experiment that the MUSIC algorithm outperforms all other techniques in terms of RMSAE.
Amongst the machine learning techniques, SVR performs better in terms of RMSAE.
Techniques such as PR1, PR2 and RR have higher RMSAE and have lobes in the
RMSAE curve for DOA estimation. These lobes in the RMSAE curve indicate that the
predicted DOA may have a higher error for a randomly tested angle. DAS has a smooth curve
but has higher RMSAE compared to other techniques at higher SNR values. All the
techniques show a higher RMSAE at the end-fire, i.e. angles near 90°, but comparatively,
MUSIC has the lowest RMSAE near the end-fire, supporting the claim that MUSIC
outperforms all other algorithms considered.

In the future, this work can be extended by implementing a root-MUSIC algorithm that
avoids searching for peaks in the spectrum and angle corresponding to it, rather, it finds roots
by defining a variable-based steering vector and uses it to estimate DOA.
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