Stability of laminated composite and sandwich FGM shells using a novel isogeometric finite strip method
ISSN: 0264-4401
Article publication date: 8 January 2020
Issue publication date: 16 April 2020
Abstract
Purpose
This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main aim of the present study is developing an efficient combined method which uses the advantages of different methods, such as finite element method (FEM) and isogeometric analysis (IGA), to achieve multipurpose targets. Two types of material including laminated composite and sandwich functionally graded material are considered.
Design/methodology/approach
A novel type of finite strip method called isogeometric B3-spline finite strip method (IG-SFSM) is used to solve the eigenvalue buckling problem. IG-SFSM uses B3-spline basis functions to interpolate the buckling displacements and mapping operations in the longitudinal direction of the strips, whereas the Lagrangian functions are used in transverse direction. The current presented IG-SFSM is formulated based on the degenerated shell method.
Findings
The buckling behavior of laminated shells is discussed by solving several examples corresponding to shells with various geometries, boundary conditions and material properties. The effects of mechanical and geometrical properties on critical loads of shells are investigated using the related results obtained by IG-SFSM.
Originality/value
This paper shows that the proposed IG-SFSM leads to the critical loads with an approved accuracy comparing with the same examples extracted from the literature. Moreover, it leads to a high level of convergence rate and low cost of solving the stability problems in comparison to the FEM.
Keywords
Citation
Shahmohammadi, M.A., Azhari, M., Saadatpour, M.M. and Sarrami-Foroushani, S. (2020), "Stability of laminated composite and sandwich FGM shells using a novel isogeometric finite strip method", Engineering Computations, Vol. 37 No. 4, pp. 1369-1395. https://doi.org/10.1108/EC-06-2019-0246
Publisher
:Emerald Publishing Limited
Copyright © 2019, Emerald Publishing Limited