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Abstract

Purpose –The paper deals with the existence of positive solutions for a coupled system of nonlinear fractional
differential equations with p-Laplacian operator and involving both right Riemann–Liouville and left Caputo-
type fractional derivatives. The existence results are obtained by the help of Guo–Krasnosel’skii fixed-point
theorem on a cone in the sublinear case. In addition, an example is included to illustrate the main results.
Design/methodology/approach – Fixed-point theorems.
Findings – No finding.
Originality/value – The obtained results are original.
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1. Introduction
In this paper, we consider the following coupled system of nonlinear fractional differential
equations with p-Laplacian operator:8>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

RDα
1−fp

�
CD

β1
0þuðtÞ

�
þ a1ðtÞf1ðuðtÞ; vðtÞÞ ¼ 0; t ∈ ½0; 1�;

RDα
1−fp

�
CD

β2
0þvðtÞ

�
þ a2ðtÞf2ðuðtÞ; vðtÞÞ ¼ 0; t ∈ ½0; 1�;

fp

�
CD

β1
0þuð1Þ

�
¼ 0; u

0 ð0Þ ¼ 0; η1uð1Þ � uð0Þ ¼
Z1

0

g1ðs; uðsÞ; vðsÞÞds;

fp

�
CD

β2
0þvð1Þ

�
¼ 0; v

0 ð0Þ ¼ 0; η2vð1Þ � vð0Þ ¼
Z1
0

g2ðs; uðsÞ; vðsÞÞds:
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where 0 < α < 1; 1 < βi < 2; ηi > 1; ði ¼ 1; 2Þ and fpðsÞ ¼ jsjp−2s; p > 1; fq ¼ ðfpÞ−1;
1
p
þ 1

q
¼ 1; ℝDα

1− the right Riemann–Liouville fractional derivative, CD
βi
0þ denotes the left

Caputo fractional derivative of order βi; the functions ai ∈Cð½0; 1�; ℝþÞ; fi ∈Cðℝþ 3ℝþ;
ℝþÞ; gi ∈Cð½0; 1�3ℝþ 3ℝþ; ℝþÞ for i ¼ 1; 2:

Fractional differential equations arise inmany engineering and scientific disciplines as the
mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of a complex medium, polymer rheology, etc. Fractional
differential equations also serve as an excellent tool for the description of hereditary
properties of variousmaterials and processes. For the basic theory and recent development of
subject, see [1, 2, 3]. Recently, a linear boundary value problem involving both the right
Caputo and the left Riemann–Liouville fractional derivatives have been studied by many
authors [4, 5] Many people pay attention to the existence and multiplicity of solutions or
positive solutions for boundary value problems of nonlinear fractional differential equations
by means of some fixed-point theorems [6–13].

In [14], by applying Guo–Krasnosel’ski�ı’s fixed-point theorem, Guezane-Lakoud and
Ashyralyev discussed the existence of positive solutions for the following fractional BVP8>>><

>>>:
Dq

0þuðtÞ ¼ f ðt; uðtÞÞ; t ∈ ½0; 1�; 1 < q < 2

u
0 ð0Þ ¼ 0; uð0Þ � αuð1Þ ¼

Z1
0

gðs; uðsÞÞds:

where f : ½0; 1�3ℝ→ℝ is a given function, α ∈ ℝþ; Dq
0þ denotes the Caputo’s fractional

derivative of order q.
On the other hand, the study of coupled systems involving fractional differential

equations is also important as such systems occur in various problems, see [13, 15, 16] and the
references therein.

In the interesting paper [17], Liu studied by the help of Picard iterative method and
Schaefer’s fixed-point theorem, the existence of solutions for four classes of boundary value
problems for impulsive fractional differential equations.

In [12], relying on the Guo–Krasnosel’ski�ı’s fixed-point theorem, Li and Wei discussed
existence of positive solutions for the following coupled system of mixed higher-order
nonlinear singular fractional differential equations with integral boundary conditions8>>>>>>>>><

>>>>>>>>>:

D
α1
0þuðtÞ þ a1ðtÞf1ðt; uðtÞ; vðtÞÞ ¼ 0; t ∈ ½0; 1�

Dα2
0þvðtÞ þ a2ðtÞf2ðt; uðtÞÞ ¼ 0; t ∈ ½0; 1�

uðjÞð0Þ ¼ vðkÞð0Þ ¼ 0; 0 ≤ j ≤ n1 � 2; 0 ≤ k ≤ n2 � 2

uð1Þ ¼
Z1
0

h1ðsÞuðsÞds; vð1Þ ¼
Z1
0

h2ðsÞvðsÞds

where ni − 1 < αi < ni; ni ≥ 3; Dαi
0þ are the standard Riemann–Liouville fractional

derivative, aiðtÞ∈C½0; 1� may be singular at t ¼ 0; and/or t ¼ 1; hi ∈ L1½0; 1� are
nonnegative ði ¼ 1; 2Þ.

On the other hand, differential equations with p-Laplacian operator have been widely
studied owing to its importance in theory and application of mathematics and physics, such
in non-Newtonian mechanics, nonlinear elasticity and glaciology, population biology,

AJMS
27,2

236



nonlinear flow laws. There are a very large number of papers devoted to the existence of
solutions of the p-Laplacian operator, see for example [18–25].

In [26] G. Q. Chai, studied the existence of positive solutions for the boundary-value
problem of nonlinear fractional differential equations with p-Laplacian operator(

Dβ
0þfp

�
Dα

0þuðtÞ
�þ f ðt; uðtÞÞ ¼ 0; 0 < t < 1;

Dα
0þuð0Þ ¼ 0; Dα

0þuð1Þ þ σDγ
0þuð1Þ ¼ 0; uð0Þ ¼ 0:

where 1 < α < 2; 0 < β < 1; fpðsÞ ¼ jsjp−2s; p > 1; fq ¼ ðfpÞ−1; 1
p
þ 1

q
¼ 1; Dα

0þ ; D
β
0þ are

the standard Riemann–Liouville fractional derivatives, 0 < γ ≤ 1; The function
f : ½0; 1�3ℝþ

→ℝþ is continuous.
The rest of the paper is organized as follows. In Section 2, we present preliminaries and

lemmas. Section 3, we investigate the existence of a solution for the corresponding fractional
linear boundary value problem. Finally, Section 4 is devoted to the existence of positive
solutions under some sufficient conditions on the nonlinear terms, thenwe give an example to
illustrate our results.

2. Preliminaries
In this section, we recall the basic definitions and lemmas from fractional calculus theory,
see [2, 3], for more details.

Let α > 0; ½a; b� be a finite interval ofℝ and g a real function on ða; bÞ:The left and right
Riemann–Liouville fractional integral of the function g are defined, respectively, by

Iαaþ f ðtÞ ¼
1

ΓðαÞ
Z t

a

ðt � sÞα−1gðsÞds; Iαb− f ðtÞ ¼
1

ΓðαÞ
Zb

t

ðs� tÞα−1gðsÞds;

provided that the right-hand side exists.
The right Riemann–Liouville fractional derivative and the left Caputo fractional

derivative of order α > 0 of g are, respectively

RDα
b− f ðtÞ ¼

�
−d

dt

�n

I n−αb− gðtÞ; CDα
aþ f ðtÞ ¼ I n−αaþ gðnÞðtÞ;

where n < α < nþ 1; n ¼ ½α� þ 1; provided that the right-hand side exists.
For the properties of Riemann–Liouville fractional derivative and Caputo fractional

derivative, we obtain the following statement. Let u∈L1ð0; 1Þ then

I αR1− D
α
1−uðtÞ ¼ uðtÞ þ

Xn
i¼1

aið1� tÞα−i (2.1)

IαC0þ D
α
0þuðtÞ ¼ uðtÞ þ

Xn−1
k¼0

bkt
k (2.2)

where ai; bk ∈ℝ; i ¼ 0; . . . n; and k ¼ 0; . . . n− 1:
We also need the following lemma and theorem to obtain our results.

Lemma 2.1. [26] Let c > 0; γ > 0: for any x; y∈ ½0; c�we have
(1) if γ > 1; then jxγ − yγ j ≤ γcγ−1jx− yj;
(2) if 0 < γ ≤ 1; then jxγ − yγ j ≤ jx− yjγ :
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Theorem2.1. [27] (Guo–Krasnoselski�ı’s) LetE be a Banach space, and letK ⊂E, be a cone.
AssumeΩ1 andΩ2 are open subsets ofEwith 0∈Ω1; Ω1 ⊂ Ω2 and letT : K ∩ ðΩ2nΩ1Þ→K,
be a completely continuous operator such that

(1) kTuk≤ kuk; u ∈ K ∩ vΩ1, and jjTujj≥ kuk; u∈K ∩ vΩ2; or

(2) kTuk≥ kuk; u∈K ∩ vΩ1 and jjTujj≤ kuk; u∈K ∩ vΩ2:

Then T has a fixed point in K ∩ ðΩ2nΩ1Þ

3. Linear boundary value problem

Lemma 3.1. Assume that y∈Cð0; 1Þ∩L1ð0; 1Þ and 1 < βi < 2; i ¼ 1; 2, the unique
solution of the boundary value problem

CD
βi
0þuðtÞ þ yðtÞ ¼ 0; t ∈ ½0; 1�; (3.1)

u
0 ð0Þ ¼ 0; ηiuð1Þ � uð0Þ ¼

Z1
0

giðsÞds (3.2)

is given by

uðtÞ ¼
Z1
0

Giðt; sÞyðsÞdsþ 1

ηi � 1

Z1

0

giðsÞds (3.3)

where

Giðt; sÞ ¼ 1

ΓðβiÞ

8><
>:

ηi
ηi � 1

ð1� sÞβi−1 � ðt � sÞβi−1; 0 ≤ s ≤ t ≤ 1:

ηi
ηi � 1

ð1� sÞβi−1; 0 ≤ t ≤ s ≤ 1:

(3.4)

Proof. We apply (2.2) to equation (3.1) to get

uðtÞ ¼ −I
βi
0þyðtÞ þ c1 þ c2t; t ∈ ½0; 1� (3.5)

thanks to boundary condition (3.2) we obtain c2 ¼ 0; and

c1 ¼ 1

ηi � 1

2
4 ηi
ΓðβiÞ

Z1

0

ð1� sÞβi−1yðsÞdsþ
Z1

0

giðsÞds
3
5:

So, the unique solution of the problem (3.1) is

uðtÞ ¼ 1

ΓðβiÞ

2
4�

Z t

0

ðt � sÞβi−1yðsÞdsþ ηi
ηi � 1

Z1
0

ð1� sÞβi−1yðsÞds
3
5þ 1

ηi � 1

Z1
0

giðsÞds

¼
Z1
0

Giðt; sÞ yðsÞdsþ 1

ηi � 1

Z1
0

giðsÞds:

The proof is completed. ▪
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Lemma 3.2. If y ∈ Cð0; 1Þ∩L1ð0; 1Þ, then the boundary value problem

RDα
1−fp

�
CD

βi
0þuðtÞ

�
þ yðtÞ ¼ 0; 0 ≤ t ≤ 1 (3.6)

fp

�
CD

βi
0þuð1Þ

�
¼ 0 (3.7)

u
0 ð0Þ ¼ 0; ηiuð1Þ � uð0Þ ¼

Z1
0

giðsÞds (3.8)

has an unique solution

uðtÞ ¼
Z1

0

Giðt; sÞfq

0
@Z1

s

ðτ � sÞα−1
ΓðαÞ yðτÞdτ

1
Adsþ 1

ηi � 1

Z1
0

giðsÞds

where Giðt; sÞ is defined as (3.4).
Proof. From Eqs (3.6) and (2.1), we have

fp

�
CD

βi
0þuðtÞ

�
¼ −Iα1−yðtÞ þ C1ð1� tÞα−1; C1 ∈ℝ: (3.9)

By the boundary conditions (3.7) we get C1 ¼ 0; consequently,

fp

�
CD

βi
0þ uðtÞ

�
¼ −I α1−yðtÞ

and then

CD
βi
0þuðtÞ þ fq

0
@ 1

ΓðαÞ
Z1
t

ðs� tÞα−1yðsÞds
1
A ¼ 0; t ∈ ½0; 1�: (3.10)

Thus, the fractional boundary value problem (3.1)–(3.2) is equivalent to the following problem

CD
βi
0þuðtÞ þ fq

0
@ 1

ΓðαÞ
Z1

s

ðs� tÞα−1yðsÞds
1
A ¼ 0; t ∈ ½0; 1�

u
0 ð0Þ ¼ 0; ηiuð1Þ � uð0Þ ¼

Z1

0

giðsÞds:

Lemma 3.1 implies that the problem (3.6), (3.7) and (3.8) has an unique solution

uðtÞ ¼
Z1
0

Giðt; sÞfq

0
@ 1

ΓðαÞ
Z1

s

ðτ � sÞα−1yðτÞdτ
1
Adsþ 1

ηi � 1

Z1
0

giðsÞds;

the proof is achieved. ▪

Lemma 3.3. The functions Giðt; sÞ; i ¼ 1; 2 are continuous on ½0; 1� 3 ½0; 1� and satisfy
the following properties:

(1) Giðt; sÞ > 0 for t; s∈ ½0; 1Þ; i ¼ 1; 2

(2) 1
ηi
Giðs; sÞ ≤ Giðt; sÞ ≤ Giðs; sÞ; i ¼ 1; 2 for ðt; sÞ ∈ ½0; 1Þ3 ½0; 1Þ.
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Proof. (1) Observing the expression of Giðt; sÞ, it is easy to see that Giðt; sÞ > 0;
for t; s∈ ½0; 1Þ; i ¼ 1; 2

(2) First, Giðt; sÞ ≤ Giðs; sÞ for t; s ∈ ½0; 1Þ
Second, setting

gi;1ðt; sÞ ¼ ηi
ðηi � 1ÞΓðβiÞ

ð1� sÞβi−1 � ðt � sÞβi−1
ΓðβiÞ

; s≤ t

gi;2ðsÞ ¼ ηi
ðηi � 1ÞΓðβiÞ

ð1� sÞβi−1; t ≤ s

for given s∈ ½0; 1Þ; gi;1ðt; sÞ is decreasing as a function of t, then,

gi;1ðt; sÞ≥ gi;1ð1; sÞ

¼ 1

ðηi � 1ÞΓðβiÞ
ð1� sÞβi−1

≥
1

ηi
Giðs; sÞ;

and gi;2ðsÞ ≥ 1
ηi
Giðs; sÞ: ▪

4. Existence of positive solutions
We need to introduce some notations for the forthcoming discussion. Let
X ¼ C½0; 1� 3 C½0; 1� be the Banach space endowed with the norm

kðx1; x2Þk ¼ maxðkxik∞; i ¼ 1; 2Þ
where kxik∞ ¼ max

t∈½0; 1�
jxiðtÞj

Define the cone P ⊂X by

P ¼
�
ðx1; x2Þ∈X : xiðtÞ≥ 0; t ∈ ½0; 1�; min

t∈½0;1�
xiðtÞ≥ 1

ηi
kxik∞; i ¼ 1; 2

	
(4.1)

Let us introduce the following notations

Aδ;i ¼ lim
ðjujþjvjÞ→δ

fiðu; vÞ
ðjuj þ jvjÞp−1; ðδ ¼ 0þ or þ∞Þ;

Ei ¼
Z1
0

Giðs; sÞds;

Fi ¼ aq−1i

ðΓðαÞÞq−1
Z1
0

Giðs; sÞ
�Z1

s

ðτ � sÞα�1
dτ
�q−1

ds; where ai ¼ max
t∈½0:1�

aiðtÞ
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By simple calculation, we get

Ei ¼ ηi
ðηi � 1ÞΓðβi þ 1Þ

Fi ¼ ηia
q−1
i

ðηi � 1ÞðΓðαþ 1ÞÞq−1ΓðβiÞ½αðq� 1Þðβi � 1Þ þ 1�; i ¼ 1; 2

We make the following assumption:
(H): There exist two nonnegative functions c1; c2 ∈L1½0; 1� and two constants b1; b2 > 0

such that

g1ðt; u; vÞ ≤ b1c1ðtÞðuþ vÞ; g2ðt; u; vÞ ≤ b2c2ðtÞðuþ vÞ;
for ðu; vÞ∈ℝþ 3ℝþ; with kcikL1 ≤ ηi − 1

2bi
; i ¼ 1; 2:

Lemma 4.1. The system ðSÞ has a positive solution ðu; vÞ if and only if ðu; vÞ is a positive
solution for the following system of integral equations:8>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

uðtÞ ¼
Z1
0

G1ðt; sÞ
0
@ 1

ΓðαÞ
Z1

s

ðτ � sÞα�1
a1ðτÞf1ðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

þ 1

η1 � 1

Z1
0

g1ðs; uðsÞ; vðsÞÞds

vðtÞ ¼
Z1
0

G2ðt; sÞ
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
a2ðτÞf2ðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

þ 1

η2 � 1

Z1
0

g2ðs; uðsÞ; vðsÞÞds:

(4.2)

Proof. Easily obtained by Lemma 3.2, then we omit it. ▪

Define the operator

T : P→C½0; 1�3C½0; 1�
Tðu; vÞ ¼ ðT1ðu; vÞ;T2ðu; vÞÞ; (4.3)

where Ti : P→C½0; 1� and

Tiðu; vÞ ¼
Z1
0

Giðt; sÞ
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

þ 1

ηi � 1

Z1
0

giðs; uðsÞ; vðsÞÞds:

(4.4)
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Then, by Lemma 4.1, the existence of solutions for problem ðSÞ is translated into the existence
of fixed points for Tðu; vÞ ¼ ðu; vÞ, thus the fixed point of the operator T coincides with the
solution of problem ðSÞ.

Lemma 4.2. Let T : P→X be the operator defined by (4.3). Then T is completely
continuous and TP ⊂P.

Proof. First, we shall show that TP ⊂P:We have for each t ∈ ½0; 1�;

jTiðuðtÞ; vðtÞÞj≤
Z1
0

Giðt; sÞ
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

þ 1

ηi � 1

Z1
0

giðs; uðsÞ; vðsÞÞds

Taking the supremum over ½0; 1�, we get

kTiðu; vÞk∞≤

Z1
0

Giðt; sÞ
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

þ 1

ηi � 1

Z1

0

giðs; uðsÞ; vðsÞÞds:

On the other side, we have

TiðuðtÞ; vðtÞÞ ≥ 1

ηi

Z1

0

Giðt; sÞ
0
@ 1

ΓðαÞ
Z1

s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

þ 1

ηi � 1

Z1
0

giðs; uðsÞ; vðsÞÞds

Since ηi > 1, then,

TiðuðtÞ; vðtÞÞ ≥ 1

ηi
kTiðu; vÞk∞:

That is TP ⊂P:
Second, we shall proof that T is completely continuous that will be done in two steps.

Step 1: By the continuity of the functions fi and gi it yields for n ≥ N ;

jfiðunðτÞ; vnðτÞÞ � fiðuðτÞ; vðτÞÞj < ε;

jgiðs; unðsÞ; vnðτÞÞ � giðs; uðsÞ; vðτÞÞj < ε:
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(1) If 1 < q≤ 2; then from Lemma 2.1







0
@Z1

s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1

�
0
@Z1

s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1









≤

0
@Z1

s

ðτ � sÞα�1
aiðτÞjfiðunðτÞ; vðτÞÞ � fiðuðτÞ; vðτÞÞjdτ

1
A

q−1

<
hε
α
ai

iq−1
:

Then,

jTiðun; vnÞ � Tiðu; vÞj < aq−1i εq−1

ðΓðαþ 1ÞÞq−1
Z1
0

Giðs; sÞdsþ ε
ηi � 1

¼ aq−1i εq−1

ðΓðαþ 1ÞÞq−1 Ei þ 1

ηi � 1
ε:

Hence

jjTiðun; vnÞ � Tiðu; vÞjj∞≤

 
aq−1i Ei

ðΓðαþ 1ÞÞq−1 þ
1

ηi � 1

!
εq−1: (4.5)

(2) If q > 2; then from Lemma 2.1, we have







0
@ 1

ΓðαÞ
Z1

s

ðτ � sÞα�1
aiðτÞfiðunðτÞ; vðτÞÞdτ

1
A

q−1

�
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1









≤
ðq� 1ÞðcÞq−2

ΓðαÞ
Z1

s

ðτ � sÞα−1aiðτÞjfiðunðτÞ; vðτÞÞ � fiðuðτÞ; vðτÞÞjdτ

<
ðq� 1Þcq−2ai
Γðαþ 1Þ ε:

So,

jTiðun; vnÞ � Tiðu; vÞj <
0
@ðq� 1Þcq−2ai

Γðαþ 1Þ
Z1

0

Giðs; sÞdsþ 1

ηi � 1

1
Aε:
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Hence

kTiðun; vnÞ � Tiðu; vÞk∞ <

�ðq� 1Þcq−2ai
Γðαþ 1Þ Ei þ 1

ηi � 1

�
ε: (4.6)

From (4.5)–(4.6) it follows that jjTðun; vnÞ−Tðu; vÞjj→ 0 as n→∞; thus T is continuous.

Step 2: The operator T is uniformly bounded on P:LetΩbe an open bounded set in P. Set

Li ¼ max fiðuðtÞ; vðtÞÞ < ∞

ðu;vÞ∈Ω
; li ¼ max giðt; uðtÞ; vðtÞÞ

ðt;u;vÞ∈½0;1�3Ω
:

Then for ðt; u; vÞ∈ ½0; 1�3Ω; we have

jTiðuðtÞ; vðtÞÞj ≤
Z1
0

Giðt; sÞ
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

þ 1

ηi � 1

Z1

0

giðs; uðsÞ; vðsÞÞds

≤

�
Liai

ðΓðαþ 1ÞÞ
�q−1 Z1

0

Giðs; sÞdsþ li

ðηi � 1Þ

¼
�

Liai

ðΓðαþ 1ÞÞ
�q−1

Ei þ li

ηi � 1
< ∞

thus TðΩÞ is uniformly bounded.
Now we prove that TðΩÞ equicontinuous, Let ðu; vÞ∈Ω; 0≤ t1 ≤ t2 ≤ 1. We have

jTiðuðt1Þ; vðt1ÞÞ � Tiðuðt2Þ; vðt2ÞÞj

≤

Zt1
0

jGiðt2; sÞ � Giðt1; sÞj
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

þ
Z1
t2

jGiðt2; sÞ � Giðt1; sÞj
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

þ
Zt2
t1

jGiðt2; sÞ � Giðt1; sÞj
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞfiðuðτÞ; vðτÞÞdτ

1
A

q−1

ds

≤

�
Liai

ðΓðαþ 1ÞÞ
�q−1 jt2 � t1jβi

Γðβi þ 1Þ :

Consequently, jTiðuðt1Þ; vðt1ÞÞ−Tiðuðt2Þ; vðt2ÞÞj→ 0, when t2 → t1: Hence TðΩÞ is
equicontinuous. Finally, by Arzela–Ascoli’s theorem, it follows that T is completely
continuous mapping on Ω: ▪
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Theorem 4.1. Assume that the condition ðHÞ is satisfied, then the system ðSÞ has at least
one nontrivial positive solution ðu; vÞ in the coneP, in the caseA0;i ¼ 0andA∞;i ¼ ∞; i ¼ 1; 2:

Proof. From A0;i ¼ 0; i ¼ 1; 2; we deduce that for

0 < ε ≤ min
i¼1;2

8><
>:
��

1� bi

ηi � 1
kcikL1

�
1

Fi

� 1
q−1

9>=
>;;

there exist ρ1 > 0; such that if 0 < uþ v ≤ ρ1, then

fiðu; vÞ≤ εðjuj þ jvjÞp−1

Let Ω1 ¼ fðu; vÞ∈X ; kðu; vÞk < ρ1g:Assume that ðu; vÞ ∈ P ∩ vΩ1; then

TiðuðtÞ; vðtÞÞ≤
Z1
0

Giðs; sÞ
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞεðjuj þ jvjÞp�1

dτ

1
A

q−1

ds

þ 1

ηi � 1

Z1
0

biciðsÞðjuj þ jvjÞds:

≤

� ε
ΓðαÞ

�q−1 Z1
0

Giðs; sÞ

3

0
@Z1

s

ðτ � sÞα�1
aiðτÞðkuk∞ þ kvk

∞
Þp�1

dτ

1
A

q−1

ds

þ bi

ηi � 1

Z1
0

ciðsÞðkuk∞ þ kvk
∞
Þds:

¼ jjðu; vÞjj
�
εq−1Fi þ bi

ηi � 1
kcikL1

�

≤ kðu; vÞk:
Hence

kTðu; vÞk ≤ jjðu; vÞjj; forðu; vÞ ∈ vΩ1 ∩P

Since A∞;i ¼ ∞; i ¼ 1; 2; so for

μ ≥ max
i¼1;2

8>><
>>:
�
η2ΓðαÞ

ξi

� 1
q−1

9>>=
>>;; ξi ¼

Z1
0

Giðs; sÞ
0
@Z1

s

ðτ � sÞα�1
aiðτÞdτ

1
A

q−1

ds;

Positive
solutions for
p-Laplacian

systems

245



there exists ρ > 0; such that if uþ v ≥ ρ, then

fiðu; vÞ ≥ μðjuj þ jvjÞp−1:

Let ρ2 ¼ maxð32 ρ1; ηρÞ; η ¼ maxðη1; η2Þ; and set Ω2 ¼ fðu; vÞ∈X ; kðu; vÞk < ρ2g; it is
easy to see that Ω1 ⊂Ω2:Assume that ðu; vÞ ∈ P∩ vΩ2; then

TiðuðtÞ; vðtÞÞ ≥ 1

ηi

Z1
0

Giðs; sÞ
0
@ 1

ΓðαÞ
Z1
s

ðτ � sÞα�1
aiðτÞμðjuj þ jvjÞp�1

dτ

1
A

q−1

ds

≥
1

ηi

� μ
ΓðαÞ

�q−1 Z1
0

Giðs; sÞ

3

0
@Z1

s

ðτ � sÞα�1
aiðτÞ

�
1

η1
kuk

∞
þ 1

η2
kvk

∞

�p�1

dτ

1
A

q−1

ds

≥
1

η2

� μ
ΓðαÞ

�q−1
ξikðu; vÞk ≥ kðu; vÞk;

thus

kTðu; vÞk≥ kðu; vÞk; ðu; vÞ∈ vΩ2 ∩ P:

By Guo–Krasnosel’skii fixed-point theorem, we conclude that T has a fixed point
ðu; vÞ∈P ∩ ðΩ2nΩ1Þ: This means that the system ðSÞ has at least one positive
solution ðu; vÞ. ▪

Example 4.1. Consider the system ðSÞ, with
f1ðu; vÞ ¼ ðuþ vÞ3; f2ðu; vÞ ¼ eðuþvÞ2 � 1

a1ðtÞ ¼ et; a2ðtÞ ¼ 1

g1ðt; u; vÞ ¼ ð1� tÞðuþ vÞ2
3uþ 4v

; g2ðt; u; vÞ ¼ t

9
u

where α ¼ 1
2
; β1 ¼ β2 ¼ 4

3
; p ¼ 2; η1 ¼ 3

2
; η2 ¼ 5

4
: We check easily that A0;i ¼ 0; A∞;i ¼ ∞;

i ¼ 1; 2: Clearly,

g1ðt; u; vÞ ≤ 1� t

3
ðuþ vÞ; g2ðt; u; vÞ ≤ t

5
ðuþ vÞ

So, the assumption ðHÞ hold. Thus the system ðSÞ has at least one positive solution by
Theorem 4.1.
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