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Abstract

Purpose — The paper deals with the existence of positive solutions for a coupled system of nonlinear fractional
differential equations with p-Laplacian operator and involving both right Riemann-Liouville and left Caputo-
type fractional derivatives. The existence results are obtained by the help of Guo—Krasnosel’skii fixed-point
theorem on a cone in the sublinear case. In addition, an example is included to illustrate the main results.
Design/methodology/approach — Fixed-point theorems.
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1. Introduction
In this paper, we consider the following coupled system of nonlinear fractional differential
equations with p-Laplacian operator:

“Dr ¢, (DY) +a (DA (), (1) =0, te, 1],
D1 g, (Do) + ax(Ohu(t), o(1) =0, te, 1,

b, (CDgl”(l)) =0, (0) =0, nu(l /gl v(s))ds,

0
1
8, (Dlio(D) =0,4/0) = 0. (1) = 0(0) = [ gals, (). (6))ds.
0
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where 0 <a<1,1<p<2,n,>1,(i=1,2) and §,(s) = |s/'" s, p > 1, ¢, = (¢,) ",
%—I—% =1, D% the right Riemann-Liouville fractional derivative, CDgi denotes the left

Caputo fractional derivative of order ;, the functions a; € C([0, 1], RY), f; € C(RT X R™,
R"), g€ C([0, 1] X R" X R*, R") fori =1, 2.

Fractional differential equations arise in many engineering and scientific disciplines as the
mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of a complex medium, polymer rheology, etc. Fractional
differential equations also serve as an excellent tool for the description of hereditary
properties of various materials and processes. For the basic theory and recent development of
subject, see [1, 2, 3]. Recently, a linear boundary value problem involving both the right
Caputo and the left Riemann-Liouville fractional derivatives have been studied by many
authors [4, 5] Many people pay attention to the existence and multiplicity of solutions or
positive solutions for boundary value problems of nonlinear fractional differential equations
by means of some fixed-point theorems [6-13].

In [14], by applying Guo—Krasnosel'ski’'s fixed-point theorem, Guezane-Lakoud and
Ashyralyev discussed the existence of positive solutions for the following fractional BVP

Diu(t) =f(t, u(t)), tel0, 1], 1< g <2

1

£ (0) = 0, u(0) — au(l) = / g(s, u(s))ds

0

where f: [0,1] X R — R is a given function, @ € R*, D, denotes the Caputo’s fractional
derivative of order gq.

On the other hand, the study of coupled systems involving fractional differential
equations is also important as such systems occur in various problems, see [13, 15, 16] and the
references therein.

In the interesting paper [17], Liu studied by the help of Picard iterative method and
Schaefer’s fixed-point theorem, the existence of solutions for four classes of boundary value
problems for impulsive fractional differential equations.

In [12], relying on the Guo—Krasnosel'skir’s fixed-point theorem, Li and Wei discussed
existence of positive solutions for the following coupled system of mixed higher-order
nonlinear singular fractional differential equations with integral boundary conditions

Dytu(t) + a1 (A (L, (1)) =0, €0, 1]
Dzo(t) + ax(1)fa(2, u(t 0,te]0, 1]
u%(0) :v(k)(O) =0,0<j<m—20<k<n—2

/hl s)ds, v(1) = /hz(S)U(S)dS

where 7, —1 < o; <m;, n; > 3, Dji are the standard Riemann-Liouville fractional
derivative, ;(t)€C[0, 1] may be singular at ¢+ =0, and/or ¢ =1, I; € [,]0, 1] are
nonnegative (1 = 1, 2).

On the other hand, differential equations with p-Laplacian operator have been widely
studied owing to its importance in theory and application of mathematics and physics, such
in non-Newtonian mechanics, nonlinear elasticity and glaciology, population biology,



nonlinear flow laws. There are a very large number of papers devoted to the existence of
solutions of the p-Laplacian operator, see for example [18-25].

In [26] G. Q. Chai, studied the existence of positive solutions for the boundary-value
problem of nonlinear fractional differential equations with p-Laplacian operator

Dy ¢, (Diu(t)) + (¢, u(t)) =0, 0<t <1,
DEu(0) = 0, D& u(1) + oD, u(1) = 0, u(0) = 0.

where 1 <a<2,0<p<1,¢,5) =s/7s,p>1¢,=(4,)", sri=1,D5, Dj. are
the standard Riemann-Liouville fractional derivatives, 0 <y <1, The functlon
f:[0, 1] X RT - R" is continuous.

The rest of the paper is organized as follows. In Section 2, we present preliminaries and
lemmas. Section 3, we investigate the existence of a solution for the corresponding fractional
linear boundary value problem. Finally, Section 4 is devoted to the existence of positive
solutions under some sufficient conditions on the nonlinear terms, then we give an example to
illustrate our results.

2. Preliminaries
In this section, we recall the basic definitions and lemmas from fractional calculus theory,
see [2, 3], for more details.

Leta > 0, [a, b] be a finite interval of R and g a real function on (a, b). The left and right
Riemann-Liouville fractional integral of the function g are defined, respectively, by

t

B0 =g [ €9 e, B0 = [« / “lg(s)ds

a

provided that the right-hand side exists.
The right Riemann-Liouville fractional derivative and the left Caputo fractional
derivative of order a > 0 of g are, respectively

Dste) - (57) B, DA = I

where n < a < n+ 1, n = [a] 4+ 1, provided that the right-hand side exists.
For the properties of Riemann—Liouville fractional derivative and Caputo fractional
derivative, we obtain the following statement. Let # € L' (0, 1) then

1D u(t t) + Z ai(1—1)" @2.1)

n—1

IECDE u(t) = u(t) + Z byt* 2.2)
where a;, b, €R, 1 =0, ...n,and 2 =0, ... n—1.
We also need the following lemma and theorem to obtain our results.
Lemma 2.1. [26]Let ¢ > 0, y > 0. for any x, y € [0, c] we have
1) ify > 1, then [x —y"| <y Hx -y,
(2 if0<y<l, then a7 —y"| < |x—y|".
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AJMS Theorem 2.1. [27](Guo—Krasnoselskil’s) Let £'be a Banach space, and let K C , be a cone.
279 Assume Q; and Qs are open subsets of Ewith0 € Qy, Q) € Qandlet 7 : K n (Q\Q) - K,
’ be a completely continuous operator such that

Q) | Tul| < |||, » € KnoQy, and || Tu|| > ||u||, u € K N Qq, or
@ |Tul| = ||u|, ueKndQ and || Tu|| < ||u||, u € K N IQy.
238

Then T has a fixed point in K N (Q2\Q1)

3. Linear boundary value problem

Lemma 3.1. Assume that yeC(0, 1)nL;(0,1) and 1< g; < 2,7 =1, 2, the unique
solution of the boundary value problem

Diiu(t) +y(t) =0, telo, 1], (31)
1
 (0) = 0, nue( / gi(s 3.2
0
is given by
1 ) 1
ut) = [ Git. o)+ [a(oys 83
0 ' 0
where
. %(1—3)’*1 —(t—9"" 0<s<t<l
Gi(t,s) ==—4 (34)
P | M1 =gy, 0<t<s<l
n—1
Proof. We apply (2.2) to equation (3.1) to get
ut) = =1l y(t) + o1 + oot £ €0, 1] 35)

thanks to boundary condition (3.2) we obtain ¢, = 0, and

1 n; / Bi—1 1 :
T L(ﬁ»o/ o y(s)mo/ gt(s)ds]

So, the unique solution of the problem (3.1) is

ul(t) :ﬁ !— / (t—s)ﬂ"_ly(s)ds+mn%1 / (1—s)ﬂf—1y(s)ds] +ml_1 / g(s)ds
Jaus
0

The proof is completed. [




Lemma 3.2. Ify € C(0, 1)nL(0, 1), then the boundary value problem
"D, (Dfut)) +3() =0,0 < £ <1

¢, (Dl u(1)) =0

has an unique solution
1

1 e 1
u(t) = /Gl-(t, s)q&q(/%y(r)dr)ds—i—n_ 1_ 1 /g,-(s)ds
0 0

N

where G;(¢, s) is defined as (3.4).
Proof. From Egs (3.6) and (2.1), we have

é, (CDgiu(t)) = -Iy() + CG1 -1, C eR.

By the boundary conditions (3.7) we get C; = 0, consequently,
8, (“Df u(t)) = ~I3()
and then

“Diiu(t) + ¢, (F(la) / (st)"_ly(s)ds) =0,tel0, 1].

39

3.10)

Thus, the fractional boundary value problem (3.1)—(3.2) is equivalent to the following problem

Diu(t) + &, (F(la) / (s — t)‘“y(s)ds) =0, te0, 1]

4 0) = 0; (1) — 1(0) = / & (s)ds.
0

Lemma 3.1 implies that the problem (3.6), (3.7) and (3.8) has an unique solution

u(t) = /Gi(t, s)P, (lﬂ(la) / (t— S)a_ly(f)d7> ds + " 1_ 1 /gi(s)ds,
0

0

S

the proof is achieved. m

Lemma 3.3. The functions G;(¢, s), ¢ = 1, 2are continuous on [0, 1] X [0, 1] and satisfy

the following properties:
(1) Gi(t,s) >0fort,sel0,1),i=1,2
@ LG(s.s) <Gt s) < Gls. s),i =1, 2for (£, 5) € [0, 1) X [0, 1)
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AJMS Proof. (1) Observing the expression of G;(¢,s), it is easy to see that G;(t, s) >0,
279 fort,se€0,1),i=1,2

(2) First, Gi(t,s) < Gj(s,s) for t,s € [0,1)

Second, setting

_ i gi-1 (
240 giilt, s) = m(l —s)it — TG s<t

for given s€ [0, 1), g;1(f, s) is decreasing as a function of ¢, then,

gi1(t, s)>g1(1, 5)
_ 1 S
“m—orgt Y

Z*G,‘S,S,
iy G5 S)

i

4. Existence of positive solutions
We need to introduce some notations for the forthcoming discussion. Let
X = C[0, 1] x C[0, 1] be the Banach space endowed with the norm

[[ (1, 22)[| = max(flxil, 7 =1, 2)
where ||x||,, = };}gﬁlxi(t)\
Define the cone P C X by
1 .
P= {(xl, x)eX x(t)=0,te]0, 1], mm]xl( )2’1—\|xl||w, =1, 2} @)

Let us introduce the following notations

A= tm SO
(1o~ (ae| + [v])

5=0" or + ),
1
E = / Gi(s, s)ds,
0

q-1

1 1
q-1
F, = _4 — /Gl (/ ) ldr) ds, wherea; —maxai(t)
(C(a)™ J b1



By simple calculation, we get
Ni
El‘ =
(m; =B +1)
F' _ "lia?_l l —
L =D+ 1) TB)latg - V(s -1 + 1)

We make the following assumption:
(H): There exist two nonnegative functions cj, ¢c2 € L'[0, 1] and two constants by, by > 0
such that

b

ai(t, u, v) <bha(t)(u+v), gt u, v) < bco(t)(u+v),

for (u, v) €R* X R*, with ||ci|;; < ’7”2—;{17 i=1,2.

Lemma4.1. The system (S) has a positive solution (%, v) if and only if (%, v) is a positive
solution for the following system of integral equations:

m—1
4.2)
1 ) 1 -1
v(t) = | Gu(t,s) (— (T —s8)" az(T)fz(u(T),U(T))dT) ds
[ee9\wa |
1
+’72 7 O/gZ(s,u(s),v(s))ds.
Proof. Easily obtained by Lemma 3.2, then we omit it. n
Define the operator
T:P-C[0,1]xC, 1] “3)
T(Ma ’U) = (T1 (ua 0)7 TZ(”? ’U)), ’
where 7; : P— C[0, 1] and
1 1 q-1
1 _
Ty(u, ) = / Gi(t, ) (m / (7 — ) e (@)fi (u(2), v(r))dr) ds
0 N
44
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Then, by Lemma 4.1, the existence of solutions for problem (S) is translated into the existence
of fixed points for 7'(«, v) = (u, v), thus the fixed point of the operator 7 coincides with the
solution of problem (S).

Lemma 4.2. Let T : P — X be the operator defined by (4.3). Then T is completely
continuous and 7P C P.

Proof. First, we shall show that 7P c P. We have for each ¢ € 0, 1],

Since #; > 1, then,

Tult), o(t)) > %IITi(%»U)IIM

Thatis TP CP.
Second, we shall proof that 7" is completely continuous that will be done in two steps.

Step 1: By the continuity of the functions f; and g; it yields for n > N,
fi(un (), va(7)) — filu(7), 0(2))| <,
\gi(s, un(s), va(2)) — &i(s, u(s), v(z))| <e.



(1) 1< g<2, then from Lemma 2.1

( / (r = )" a (@) (), v(r))dr) - ( / (r — ) (@) u(), v(r))dr)

N

a
Then,
q-1 -1
Tty ) — T, 0)] < —
(F (a+1)"
al~ter ! 1

= E + £.
Ca+1)7" " =1

Hence

a'E; 1
Ti(tt,v,) — Ti(u,0)||, < R el 45
I1T3( ) (u, v)] ((F(a+1))q‘1 m_1> 4.5)

@) If g > 2, then from Lemma 2.1, we have

So,
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AJMS Hence

272 (g — )" 2 1
T3 (s 0) — Tiut, 0)||, < < FlatD) i+’7i — 1) €. 4.6)
From (4.5)-(4.6) it follows that || T'(«,, vy) — T (u, v)|| = 0 as n — oo, thus T'is continuous.
244 Step 2: The operator T is uniformly bounded on P. Let Q be an open bounded set in P. Set
L; = maxfi(u(t), v(t)) < oo, L =maxg(t, u(t), v(t)).
(u0)eQ (tu)el0,1]xQ

Then for (¢, #, v) €[0, 1] X Q, we have

1 1 gq-1
ITyut), v(t))] < / Git, ) (ﬁ / (r = )" ay(e)fi(u(e), v(r))dr> ds
0

N

thus 7'(Q) is uniformly bounded.
Now we prove that 7'(Q) equicontinuous, Let («, v) € Q, 0<# <t» <1. We have

| Ti(u(ty), v(t)) — Tiu(tz), v(t))]

< /\Gi(tg, s) — Gi(ty, )| (%a) / (z— s)“lai(r)ﬁ(u(f),v(r))dr) ds

+ [ |Gi<tz,s>—ci<t1,s>|(ﬁ [ 1at<r>ﬁ<u<r>,v<r>>dr) ds
+f |Gz-<t2,s>—c,-<t1,s>|(r(la) [ 1ai<r>ﬁ<u<r>,v<r>>dr) ds

< { Lia; T_lh‘z —tl”
T lTa+1))] TE+1)
Consequently, |Ti(u(t),v(t)) = Ti(u(tz),v(t2))| =0, when £ —#. Hence T(Q) is

equicontinuous. Finally, by Arzela—Ascoli’s theorem, it follows that 7" is completely
continuous mapping on . n



Theorem 4.1. Assume that the condition (/) is satisfied, then the system (S) has at least Positive
one nontrivial positive solution (%, v) in the cone P, inthecase Ay; = 0and A ; = 00,7 = 1,2. solutions for

Proof From Ay; =0, i = 1, 2, we deduce that for p-Laplacian
systems

1

0 . 1 b; 14T
< —— el ) =
<espi (-5 )]

there exist p; > 0, such thatif 0 < u +v < p,, then
Silu, v) <ellul + ol

245

Let Q1 = {(«, v) €X, ||(«, v)|| < p;} Assume that («, v) € PNy, then
1 1 -1
N< [ 6.9 (F(a / e 9) el + ol 1dr) ds
0

s)(jul + [v])ds

1 a-1
X(/ T —9)" ai(r)(|lull, +||U||m)ﬁldf> ds

bi
T /Cz'(S)(IIMIIoo + [loll)ds
0

1

i vm(“mnb ||cz\|g)
<Jltw, ).

Hence
1T (u, )| < [|(u, v)]], for(u, v) € 0 NP

Since A; = 0,1 =1, 2, so for

2 | !
ql
uZI’_l;l?li)Z( (’71; ) /Gss(/r—si r) ds,



AJMS there exists p > 0, such that if # + v > p, then
272 fil, v) = p(lu] + ol

Let p, = max(3 py, np), n = max(ny, 1), and set Qo = {(u, v) €X, ||(u, v)|| < p,}, it is
easy to see that Q) C Qy. Assume that («, v) € PndQy, then

246 1 1 1 1 q-1
Ti(u(t), v(1)) 2 " O/Gz'(& s) Ta) / (=) a()u(ul + o) dr | ds
1/ p \ot! h
> 7’]_1 (m) O/Gt(s, S)

q-1

thus
|7 (u, v)[| 2 [ (e, 0)|], (u, v) €0 N P.

By Guo—Krasnosel'skii fixed-point theorem, we conclude that 7 has a fixed point
(u, v) €PN (Q\Qq). This means that the system (S) has at least one positive
solution (u, v). "

Example 4.1. Consider the system (S), with

2

Filw, 0) = (u+ 0, flu, v) =@ —1
a(t) =¢, as(t) =1

1 =1)(u+v)

t
3u+4v &l u, v) = gu

gl(ta u, U) = 9

where a =3, f, =, =4, p =2, =31, =3. We check easily that Ay; =0, Aw; = o,
1 =1, 2. Clearly,

(u+v)

Q1 ~

1-1¢
ai(t,u,v) < T(u—i—v), St u,v) <

So, the assumption (H) hold. Thus the system (S) has at least one positive solution by
Theorem 4.1.
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