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Abstract
Purpose –The paper deals with ultrametric bounded Fredholm operators and approximate pseudospectra of
closed and densely defined (resp. bounded) linear operators on ultrametric Banach spaces.
Design/methodology/approach –The author used the notions of ultrametric bounded Fredholm operators
and approximate pseudospectra of operators.
Findings – The author established some results on ultrametric bounded Fredholm operators and approximate
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1. Introduction
In ultrametric operator theory, Serre [1] studied the operator I � A where A is a completely
continuous linear operator on a free Banach space. On the other hand, Gurson [2] lifted this
restriction by working on general ultrametric Banach spaces. Recently, Nadathur [3] extended
and studied some classical results on compact and Fredholm operators on ultrametric Banach
spaces over a spherically complete fieldK. Moreover, Schikhof gave a basic theory for compact
and semi-Fredholm operators on ultrametric Banach spaces, for more details, we refer to
Ref. [4]. Furthermore, Perez-Garcia [5] studied the Calkin algebras and semi-Fredholm
operators on ultrametric Banach spaces. The stability of Fredholm operators and semi-
Fredholomoperators under smallest perturbation of operators and under compact operators on
ultrametric Banach spaces were proved by Araujo, Perez-Garcia and Vega [6–8]. There are
many studies on ultrametric Fredholm operators, see Refs. [1–3,5,6,8–10].

The pseudospectra of bounded linear operators and the pseudospectra of bounded linear
operator pencils and the condition pseudospectra of matrices and bounded linear operators
were extended and studied by several authors, see Refs. [11–14].

In this paper, we demonstrate some results on Fredholm operators on ultrametric Banach
spaces. On the other hand,we introduce and study the approximate pseudospectra of closed and
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densely defined linear operators on ultrametric Banach spaces. In particular, we prove that the
approximate pseudospectra associatedwith various ε are nested sets and that the intersection of
all the approximate pseudospectra is the approximate spectrum. On the other hand, we
introduce the essential approximate pseudospectra and we study some of its properties.

Throughout this paper, E, F and G are infinite-dimensional ultrametric Banach spaces
over a complete ultrametric valued field Kwith a non-trivial valuation j$j, LðE;FÞ denotes
the set of all continuous linear operators from E into F, IE is the identity operator on E and IF
is the identity operator on F. If E 5 F, we have LðE;FÞ ¼ LðEÞ. If A∈LðEÞ, N(A) and R(A)
denote the kernel and the range ofA respectively. Formore details see Refs. [9,15]. Recall that,
an unbounded linear operatorA:D(A)⊆E→ F is said to be closed if for each (xn)⊂D(A) such
that kxn� xk→ 0 and kAxn� yk→ 0 as n → ∞, for some x ∈ E and y ∈ F, then x ∈ D(A) and
y 5 Ax. A is called densely defined if D(A) is dense in E. The collection of closed linear
operators from E into F is denoted by CðE;FÞ. If E 5 F, we put CðE;FÞ ¼ CðEÞ.

2. Preliminaries
We continue by recalling some preliminaries.

Definition 2.1. [7] We say that A∈LðE;FÞ has an index when both α(A) 5 dimN(A) and
βðAÞ ¼ dim F=RðAÞð Þ are finite. In this case, the index of the linear operator A is defined as
ind(A) 5 α(A) � β(A).

Definition 2.2. [7] Let A∈LðE;FÞ. A is said to be an upper semi-Fredholm operator if α(A)
is finite and R(A) is closed. The set of all upper semi-Fredholm operators from E into F is
denoted by Φþ(E, F).

Definition 2.3. [7] LetA∈LðE;FÞ,A is said to be a lower semi-Fredholm operator if β(A) is
finite. The set of all semi-Fredholm operators from E into F is denoted by Φ�(E, F).
The set of all Fredholm operators from E into F is defined by

ΦðE;FÞ ¼ ΦþðE;FÞ \Φ−ðE;FÞ:

Definition 2.4. [15] Let E and F be two ultrametric Banach spaces overK. A linear mapA: E
→ F is said to be compact if A(BE) is compactoid in F, where BE 5 {x ∈ E: kxk ≤ 1}.
The collection of all compact operators from E into F is denoted by KðE;FÞ.

Definition 2.5. [9] Let A∈LðE;FÞ. A is called an operator of finite rank if R(A) is a finite
dimensional subspace of F.

Theorem 2.6. [15] Let A∈LðE;FÞ. Then A is compact if and only if for each ε > 0, there
exists an operator S ∈LðE;FÞ such that R(S) is finite-dimensional and kA � Sk < ε.
Definition 2.7. [9] Let E be an ultrametric Banach space and let S ∈LðEÞ. S is said to be
completely continuous if, there exists a sequence of finite rank linear operators (An) such that
kAn � Sk→ 0 as n → ∞.
The collection of all completely continuous linear operators on E is denoted by CcðEÞ.

Example 2.8. [9] Classical examples of completely continuous operators include finite rank
operators.

Theorem 2.9. [12] Suppose that K is spherically complete. Then, for each A ∈ Φ(E, F) and
K ∈ CcðE;FÞ, A þ K ∈ Φ(E, F) and ind(A þ K) 5 ind(A).

Theorem2.10. [16] Assume that E, F are ultrametric Banach spaces. Let A: D(A)⊆E→ F be
a surjective closed linear operator. Then A is an open map.
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Let A: D(A) ⊆ E → F. When the domain of A is dense in E, the adjoint operator A0 of A is
defined as usual. Specifically, the operator A0: D(A0) ⊆ F0 → E0 satisfies

�
Ax; y0

�
¼
�
x; A0y0

�

for all x ∈ D(A), y0 ∈ D(A0). As in the classical case, the following property is an immediate
consequence of the definition.

Proposition 2.11. [16] Let A be a linear operator with dense domain. Then A0 is a closed
linear operator.

Proposition 2.12. [16] Let A be a linear operator with dense domain. Then the following
statement holds:

RðAÞ⊥ ¼ N
�
A0
�

≅ ðF=RðAÞÞ
0
:

For more details on bounded linear operators, see Ref. [17].

Theorem 2.13. [18] Let E be an ultrametric Banach space over a spherically complete field
K. For each x ∈ E\{0}, there is x0 ∈ E0 such that x0(x) 5 1 and kx0k 5 kxk�1.

Lemma 2.14. [19] Let E be an ultrametric normed vector space over a spherically
complete fieldK, and suppose that E5N⊕ E0, where E0 is a closed subspace and N is finite
dimensional. If E1 is a subspace of E containing E0, then E1 is closed.

Definition 2.15. [20] Let E and F be two ultrametric Banach spaces and let A∈LðE;FÞ.

(1).The operator A is called Fredholm perturbation if A þ B ∈ Φ(E, F) whenever
B ∈ Φ(E, F).

(2).A is called an upper (resp. lower) semi-Fredholm perturbation A þ B ∈ Φþ(E, F) (resp.
A þ B ∈ Φ�(E, F)) whenever B ∈ Φþ(E, F) (resp. B ∈ Φ�(E, F)).
We denote by FðE;FÞ the set of Fredholm perturbations and by FþðE;FÞ (resp. F−ðE;FÞ)
the set of upper semi-Fredholm (resp. lower semi-Fredholm) perturbations. For E 5 F, we put
FðE;FÞ ¼ FðEÞ;FþðE;FÞ ¼ FþðEÞ and F−ðE;FÞ ¼ F−ðEÞ. The proof of the next
proposition is similar to the classical case, see Ref. [20].

Proposition 2.16. [20] Let E be an ultrametric Banach space over a spherically complete field
K. (i) If A∈ Φ(E) and F ∈FðEÞ, thenAþ F∈ Φ(E) and ind(Aþ F)5 ind(A). (ii) If A∈ Φþ(E)
and F ∈FþðEÞ, then A þ F ∈ Φþ(E) and ind(A þ F) 5 ind(A).
The proof of the next theorem is similar to the classical case, see Ref. [20].

Theorem 2.17. [20] Let E be an ultrametric Banach space over K. Let A ∈ Φþ(E). Then the
following statements are equivalent: (i) ind(A) ≤ 0; (ii) A can be expressed in the form
A 5 S þ K where K ∈ CcðEÞ, and S ∈ CðEÞ is an operator with closed range with α(S) 5 0.

Theorem 2.18. [3] Let E and F be two ultrametric Banach spaces over a spherically complete
field K. Let A∈LðE;FÞ. If there is A0;A1 ∈LðF;EÞ such that A0A− IE ∈ CcðEÞ and
AA1 − IF ∈ CcðFÞ. Then A ∈ Φ(E, F).

Theorem 2.19. [3] Let E and F be two ultrametric Banach spaces over a spherically complete
field K. Let A ∈ Φ(E, F), then there is A0 ∈LðF;EÞ such that A0A � IE and AA0 � IF have
finite dimensional images.
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Theorem 2.20. [3] Let E, F and G be three ultrametric Banach spaces over a spherically
complete field K. If A ∈ Φ(E, F) and B ∈ Φ(F, G), then BA ∈ Φ(E, G) and
ind(BA) 5 ind(A) þ ind(B).

Theorem 2.21. [3] Let E be an ultrametric Banach space over a spherically complete field K.
Let A∈ CcðEÞ and λ ∈ Knf0g, then λIE � A ∈ Φ(E) and ind(λIE � A) 5 0.

Theorem 2.22. [9] If A;B∈ CcðEÞ and C;D∈LðEÞ, then (i) Aþ B∈ CcðEÞ; (ii)
AC;DA ∈ CcðEÞ.

Lemma 2.23. [12] Let E and F be two ultrametric Banach spaces over a spherically
complete field K. Let A∈LðE;FÞ and K ∈ CcðE;FÞ. Then A þ K ∈ Φ(E, F) and
ind(A þ K) 5 ind(A) þ ind(K).

Corollary 2.24. [16] Suppose that E, F are ultramtric Banach spaces. Let A be a closed linear
operator with dense domain. If R(A) is a closed subspace which has the weak extension property
in F, then R(A0) 5 N(A)⊥.
In the next proposition, we assume that A0 exists.

Proposition 2.25. [3] Let E and F be two ultrametric Banach spaces over a spherically
complete field K. Let A ∈ Φ(E, F), then A0 ∈ Φ(F0, E0) and ind(A0) 5 �ind(A).

3. Results
As a simple consequence of Theorems 2.18 and 2.20, we have:

Corollary 3.1. Let E and F be two ultrametric Banach spaces over a spherically complete field
K. Let A∈ Φ(E,F) and let A0 ∈LðF;EÞbe such that A0A� IE andAA0� IF are of finite rank.
Then A0 ∈ Φ(F, E) and ind(A0) 5 �ind(A).
Proof. Since A0A � IE and AA0 � IF are of finite rank, we get A0A− IE ∈ CcðEÞ and
AA0 − IF ∈ CcðFÞ. Using Theorem 2.18, we have A0 ∈ Φ(F, E). Since A0 ∈ Φ(F, E) and
A ∈ Φ(E, F). By Theorem 2.20,A0A ∈ Φ(E) and ind(A0A)5 ind(A)þ ind(A0). FromTheorem
2.21, ind(A0A)5 ind(A)þ ind(A0)5 ind(IEþB)5 0, whereB5A0A� IE is of finite rank.,

Theorem 3.2. Let E, F and G be three ultrametric Banach spaces over a spherically complete
fieldK.LetA∈LðE;FÞandB∈LðF;GÞsuch that BA∈ Φ(E,G).ThenA∈ Φ(E,F) if and only
if B ∈ Φ(F, G).
Proof. Suppose thatA ∈ Φ(E, F). By Theorem 2.19, there isA0 ∈LðF;EÞ such thatA0A� IE
andAA0� IF are of finite rank. By Theorem 2.18,A0 ∈ Φ(F,E). SetC5AA0� IF, thenBC5

BAA0 � B. Since BA ∈ Φ(E, G). From Theorem 2.20, BAA0 ∈ Φ(F, G). From Example 2.8,
C ∈ CcðFÞ. By Theorem 2.22, we have BC ∈ CcðF;GÞ. From Lemma 2.23, B ∈ Φ(F, G).
Similarly we obtain that if B ∈ Φ(F, G), hence A ∈ Φ(E, F). ,

Theorem 3.3. Let E, F and G be three ultrametric Banach spaces over a spherically complete
field K. Let A∈LðE;FÞ and B∈LðF;GÞ be such that BA ∈ Φ(E, G). If α(B) is finite, then
A ∈ Φ(E, F) and B ∈ Φ(F, G).
Proof. SinceR(BA)⊂R(B), by Lemma 2.14, we get thatR(B) is closed. SinceR(BA)⊂R(B) and
α(B) is finite, we have β(B) ≤ β(BA). Using the fact that α(B) is finite, we get B ∈ Φ(F, G). By
Theorem 3.2, we have A ∈ Φ(E, F). ,

Theorem 3.4. Let E, F and G be three ultrametric Banach spaces over a spherically complete
field K. Let A∈LðE;FÞ and B∈LðF;GÞ be such that BA ∈ Φ(E, G). If β(A) is finite, then
A ∈ Φ(E, F) and B ∈ Φ(F, G).
Proof. If BA ∈ Φ(E,G), then by Proposition 2.25,A0B0 ∈ Φ(G0, E0). Since α(A0)5 β(A) is finite,
from Theorem 3.3, we getA0 ∈ Φ(F0, E0) and B0 ∈ Φ(G0, F0). Furthermore, α(B00) is finite. Also
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αðBÞ≤ αðB00Þ is finite:

Using Theorem 3.3, we get A ∈ Φ(E, F) and B ∈ Φ(F, G). ,

Lemma 3.5. Let E be an ultrametric Banach space over a spherically complete field K. Let
A1; . . . ;An ∈LðEÞ be such that for all i, j ∈ {1, . . ., n}, AiAj 5 AjAi. Suppose that
A 5 A1� � �An ∈ Φ(E). Then for all k ∈ {1, . . ., n}, Ak ∈ Φ(E).
Proof. One can see that for each k ∈ {1, . . ., n}, N(Ak) ⊂ N(A) and R(A) ⊂ R(Ak). If
A5A1� � �An ∈ Φ(E), then for all k∈ {1, . . ., n}, α(Ak) and β(Ak) are finite. SinceR(A) is closed
and β(B) is finite andK is spherically complete, then there is a finite-dimensional subspaceM
ofE such thatE5R(A)⊕M. Since for any k∈ {1, . . ., n},R(A)⊂R(Ak), fromLemma 2.14, we
have R(Ak) is closed for each k ∈ {1, . . ., n}. ,

Theorem 3.6. Let E and F be two ultrametric Banach spaces over a spherically complete field
K. Then A ∈ Φ(E, F), if and only if A ∈ Φþ(E, F) and A0 ∈ Φþ(F0, E0).
Proof. From Proposition 2.25, if A ∈ Φ(E, F), then A0 ∈ Φ(F0, E0). Thus A ∈ Φþ(E, F) and
A0 ∈ Φþ(F0,E0). Conversely, ifA∈ Φþ(E,F) andA0 ∈ Φþ(F0,E0), then α(A) is finite andR(A) is
closed. From the fact thatA0 ∈ Φþ(F0, E0), we get α(A0)5 β(A) is finite. ThusA ∈ Φ(E, F).,
We introduce the following definitions:

Definition 3.7. Let E be an ultrametric Banach space over a spherically complete field K
such that kEk⊆ jKj. LetA∈ CðEÞbe closed and densely defined. The approximate spectrum
σap(A) of A on E is defined by

σapðAÞ ¼
�

λ ∈ K : inf
x∈DðAÞ;kxk¼1

�
�ðA� λIEÞx

�
� ¼ 0

�
:

Definition 3.8. Let E be an ultrametric Banach space over a spherically complete field K
such that kEk⊆ jKj. Let A∈ CðEÞ be closed and densely defined, and let ε > 0. The
approximate pseudospectrum σap,ε(A) of A on E is defined by

σap;εðAÞ ¼ σapðAÞ∪
�

λ ∈ K : inf
x∈DðAÞ;kxk¼1

�
�ðA� λIEÞx

�
� < ε

�
:

Proposition 3.9. Let E be an ultrametric Banach space over a spherically complete fieldK such
that kEk⊆ jKj. Let A∈ CðEÞ be closed and densely defined. Then, the following
statements hold:

(1). For any ε > 0, we have σap,ε(A) ⊆ σε(A);

(2). σap(A) 5
T

ε>0
σap,ε(A);

(3). For all ε1 and ε2 such that 0 < ε1 < ε2, we have σapðAÞ⊂ σap;ε1ðAÞ⊂ σap;ε2ðAÞ;

(4). For all μ ∈ K and ε > 0, we have σap,ε(A þ μIE) 5 σap,ε þ μ;
(5). For each μ ∈ Knf0g and ε > 0, we have σap,jμjε(μA) 5 μσap,ε(A).
Proof.

(1). Let λ∉σε(A). Then kðA− λIEÞ−1k≤ ε−1. On the other hand,
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1
infx∈DðAÞ;kxk¼1

�
�ðA� λIEÞx

�
�
¼ sup

x∈DðAÞ;kxk¼1

kxk
kðA� λIEÞxk

� �

;

¼ sup
x∈DðAÞnf0g

kxk
kðA� λIEÞxk

� �

;

¼ sup
u∈Enf0g

�
�
�ðA� λIEÞ−1u

�
�
�

kuk

0

@

1

A;

¼

�
�
�ðA� λIEÞ−1

�
�
�≤ ε−1:

Thus λ∉σap,ε(A).

(2). FromDefinition 3.8, for each ε>0,we see that σap(A)⊆ σap,ε(A). Thus σap(A)⊆
T

ε>0σap,ε(A).
Conversely, if λ ∈

T
ε>0σap,ε(A), then for each ε > 0, λ ∈ σap,ε(A). If λ ∈ σap(A), there is nothing to

prove. If λ∉σap(A), then λ ∈ fλ ∈ K : infx∈DðAÞ;kxk¼1

�
�ðA− λIEÞx

�
� < εg. Taking the limit as ε →

0þ, we get infx ∈ D(A),kxk51k(A � λIE)xk 5 0, which is a contradiction. Hence λ ∈ σap(A).

(3). Let ε1 and ε2 be such that 0 < ε1 < ε2. If λ ∈ σap;ε1ðAÞ, then infx ∈ D(A),kxk51k(A � λIE)
xk < ε1 < ε2. Thus λ ∈ σap;ε2ðAÞ.

(4). If λ ∈ σap,ε(A þ μIE), then either λ ∈ σap(A þ μIE) or infx ∈ D(A),kxk51k(A � (λ � μ)IE)
xk < ε. Thus λ ∈ μ þ σap,ε(A). Similarly, if λ ∈ μ þ σap,ε(A), then λ ∈ σap,ε(A þ μIE).
(5). If λ ∈ σap,jμjε(μA), then

inf
x∈DðAÞ;kxk¼1

k: ðμA� λIEÞxk ¼ inf
x∈DðAÞ;kxk¼1

�
�
�
�
�
ðμA� λIEÞx

�
�
�
�
�
;

¼ μ inf
x∈DðAÞ;kxk¼1

�
�
�
�
�

A�
λ
μIE

� �

x

�
�
�
�
�
; < μ ε:jj

�
�
�
�
�

�
�
�
�
�

Thus λ
μ ∈ σap;εðAÞ. Then σap,jμjε(μA) ⊆ μσap,ε(A). Similarly we get μσap,ε(A) ⊆ σap,jμjε(μA).

Hence σap,jμjε(μA) 5 μσap,ε(A). ,

Theorem 3.10. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj, and let A∈ CðEÞ be closed and densely defined, and let ε > 0. Then,

σap;εðAÞ ¼
[

S∈LðEÞ:kSk<ε
σapðAþ SÞ:

Proof. Let λ ∈
S

S∈LðEÞ:kSk<εσapðAþ SÞ. Then infx ∈ D(A),kxk51k(A þ S � λIE)xk 5 0. We

will prove that λ ∈ σap,ε(A). From the estimate
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kðA� λIEÞuk ¼ kðAþ S � λIEÞu� Suk≤maxfkðAþ S � λIEÞuk; kSukg;

We infer that infx ∈ D(A),kxk51k(A � λIE)xk < ε. Conversely, suppose that λ ∈ σap,ε(A). We
discuss two cases. First case: If λ ∈ σap(A), then it suffices to put S 5 0. Second case: If
λ∉σap(A), then there is y ∈ E\{0} such that kyk5 1 and k(A� λIE)yk < ε. By Theorem 2.13,
there exists f ∈ E0 such that f(y) 5 1 and kfk 5 kyk�1 5 1. Define S on E by

Sx ¼ −fðxÞðA� λIEÞy for all x∈E:

Then, S is linear and
kSxk ¼ kfðxÞkkðA� λIEÞyk < εkxk:

Then, kSk < ε. Furthermore, infx ∈ D(A),kxk51k(A þ S � λIE)xk 5 0, because

inf
x∈DðAÞ;kxk¼1

kðAþ S � λIEÞxk≤kðAþ S � λIEÞyk≤kðA� λIEÞy� fðyÞðA� λIEÞyk ¼ 0;

for y ∈ E.

Theorem 3.11. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A∈ CðEÞ be closed and densely defined, and let ε> 0. Let S ∈LðEÞbe such
that kSk < ε. Then,

σap;ε−kSkðAÞ⊆ σap;εðAþ SÞ⊆ σap;εþkSkðAÞ:

Proof. If λ ∈ σap,ε�kSk(A), then by Theorem 3.10, there is B∈LðEÞ such that kBk < ε �
kSk and

λ ∈ σapðAþ BÞ ¼ σapððAþ SÞ þ ðB� SÞÞ:

Since kB � Sk ≤ kBk þ kSk < ε, by Theorem 3.10, we get λ ∈ σap,ε(A þ S). Similarly, if
λ ∈ σap,ε(A þ S), we obtain that λ ∈ σap,εþkSk(A). ,

Definition 3.12. Let E be an ultrametric Banach space over a spherically complete field K
such that kEk⊆ jKj, and let A∈ CðEÞ be closed and densely defined. Then, the essential
approximate spectrum σeap(A) of A is defined by

σeapðAÞ ¼
\

C∈CcðEÞ

σapðAþ CÞ:

Definition 3.13. Let E be an ultrametric Banach space over a spherically complete field K
such that kEk⊆ jKj, and let A∈ CðEÞ be closed and densely defined, and let ε > 0. Then the
essential approximate pseudospectrum σeap(A) of A is defined by
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σeap;εðAÞ ¼
\

C∈CcðEÞ

σap;εðAþ CÞ:

Proposition 3.14. Let E be an ultrametric Banach space over a spherically complete field K
such that kEk⊆ jKj. Let A∈ CðEÞ be closed and densely defined. Then, the following
statements hold:

(1). σeap(A) 5
T

ε>0
σeap,ε(A);

(2). For all ε1 and ε2 such that ε1 < ε2, we have σeapðAÞ⊂ σeap;ε1ðAÞ⊂ σeap;ε2ðAÞ;

(3). σeap,ε(A þ C) 5 σeap,ε(A), for each C ∈ CcðEÞ.
Proof.

(1). Let λ∉σeap,ε(A). Then, there is C ∈ CcðEÞ such that λ∉σap,ε(A þ C). Hence λ∉σeap(A).
Thus σeap(A) ⊂

T
ε>0σeap,ε(A). Conversely, if λ ∈

T
ε>0σeap,ε(A), then for each ε > 0,

λ ∈ σeap,ε(A). Hence, for all C ∈ CcðEÞ such that λ ∈ σap,ε(A þ C). Thus, infx
∈ D(A),kxk51k(A þ C � λIE)xk < ε. Taking the limit as ε → 0, we get infx ∈ D(A),kxk51k
(A þ C � λIE)xk 5 0. Hence λ ∈ σeap(A).

(2). If λ ∈ σeap;ε1ðAÞ, then for all C ∈ CcðEÞ such that infx ∈ D(A),kxk51k(A þ C � λIE)
xk < ε1 < ε2. Thus λ ∈ σeap;ε2ðAÞ.

(3). Follow from Definition 3.13.
In the next theorem, we give a characterization of the essential approximate pseudospectrum
by means of ultrametric semi-Fredholm operators.

Theorem 3.15. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A∈ CðEÞ be closed and densely defined, and let ε > 0. Then λ∉σeap,ε(A) if
and only if for each B∈LðEÞ such that kBk < ε, we have A þ B � λIE ∈ Φþ(E) and
ind(A þ B � λIE) ≤ 0.
Proof. If λ∉σeap,ε(A), then there is K ∈ CcðEÞ such that λ∉σap,ε(Aþ K). Using Theorem 3.10,
for each B∈LðEÞ such that kBk < ε, we have λ∉σap(A þ K þ B). Hence for each B∈LðEÞ
such that kBk < ε, we obtain

Aþ K þ B� λIE ∈ ΦþðEÞ

and

indðAþ K þ B� λIEÞ≤ 0:

From Theorem 2.16, we have
Aþ B� λIE ∈ ΦþðEÞ

and

indðAþ B� λIEÞ≤ 0:

Conversely, suppose that for eachB∈LðEÞ such that kBk< ε, we haveAþB� λIE ∈ Φþ(E)
and ind(A þ B � λIE) ≤ 0. Then from Theorem 2.17, we get
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Aþ B� λIE ¼ −ðC þ KÞ;

where K ∈ CcðEÞ and C ∈ CðEÞwith closed range α(C) 5 0. Hence

Aþ K þ B� λIE ¼ −C (3.1)

and

indðAþ K þ B� λIEÞ ¼ αðCÞ ¼ 0:

Since C has a closed range and α(C) 5 0, by (3.1), there isM > 0 such that

kðAþ K þ B� λIEÞxk≥Mkxk; for each x∈DðAÞ:

Hence infx ∈ D(A),kxk51k(AþKþB� λIE)xk≥M> 0. Thus λ∉σap(AþKþB). Consequently,
λ∉σeap,ε(A). ,

Remark 3.16. From Theorem 3.15, we get

σeap;εðAÞ ¼
[

B∈LðEÞ:kBk<ε
σeapðAþ BÞ:

From Definition 3.13 and from Proposition 3.14, we have.

Corollary 3.17. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A∈ CðEÞ be closed and densely defined, and let ε > 0. Then, we have

σeapðAÞ ¼ lim
ε→0

\

C∈CcðEÞ

σap;εðAþ CÞ ¼
\

ε>0

[

B∈LðEÞ:kBk<ε
σeapðAþ BÞ

 !

:

Theorem 3.18. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A∈ CðEÞ be closed and densely defined, and let ε > 0. Then, we have

σeap;εðAÞ ¼
\

F∈FþðEÞ

σap;εðAþ FÞ:

Proof. If λ ∉
T

F∈FþðEÞσap;εðAþ FÞ, then there is F ∈FþðEÞ such that λ∉σap,ε(A þ F). By
Theorem 3.10, for each B∈LðEÞwith kBk < ε, we have λ∉σap(A þ F þ B). Hence, for each
B∈LðEÞ such that kBk < ε, we have

Aþ F þ B� λIE ∈ ΦþðEÞ;

and
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indðAþ F þ B� λIEÞ≤ 0:

From Theorem 2.16, we have
Aþ B� λIE ∈ ΦþðEÞ

and

indðAþ B� λIEÞ≤ 0:

By Theorem 3.15, we see that λ∉σeap,ε(A). Conversely, from CcðEÞ⊂FþðEÞ, we infer that
\

F∈FþðEÞ

σap;εðAþ FÞ⊂
\

F∈CcðEÞ

σap;εðAþ FÞ ¼ σeap;εðAÞ:

Remark 3.19. (i) FromTheorem 3.18, we have σeap,ε(Aþ C)5 σeap,ε(A), for eachC ∈FþðEÞ.
(ii) Let J(E) be a subset of LðEÞ. If CcðEÞ⊂ JðEÞ⊂FþðEÞ, then we have

σeap;εðAÞ ¼
\

C∈JðEÞ

σap;εðAþ CÞ;

and

σeap;εðAþ CÞ ¼ σeap;εðAÞ for each C ∈ JðEÞ:

Theorem 3.20. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A∈ CðEÞ be closed and densely defined, and let ε> 0. Let S ∈LðEÞbe such
that kSk < ε. Then, we have (i) σeap,ε�kSk(A) ⊆ σeap,ε(A þ S) ⊆ σeap,εþkSk(A); (ii) For any
λ; μ ∈ K and μ ≠ 0, we have

σeap;εðλIE þ μAÞ ¼ λþ μσeap;εjμjðAÞ:

Proof. Follow from Theorem 3.11 and Proposition 3.9. ,

4. Bounded cases
First, we introduce the following definitions.

Definition 4.1. Let E be an ultrametric Banach space over a spherically complete field K
such that kEk⊆ jKj. LetA∈LðEÞ. The approximate spectrum σap(A) ofA onE is defined by

σapðAÞ ¼
�

λ ∈ K : inf
x∈DðAÞ;kxk¼1

�
�ðA� λIEÞx

�
� ¼ 0

�
:

Definition 4.2. Let E be an ultrametric Banach space over a spherically complete field K be
such that kEk⊆ jKj. LetA∈LðEÞand ε> 0. The approximate pseudospectrum σap,ε(A) ofA
on E is defined by
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σap;εðAÞ ¼ σapðAÞ∪

(

λ ∈ K : inf
x∈DðAÞ;kxk¼1

�
�
�
�
�
ðA� λIEÞx

�
�
�
�
�
< ε
)

:

As a particular case of Proposition 3.9, we have:

Proposition 4.3. Let E be an ultrametric Banach space over a spherically complete fieldK such
that kEk⊆ jKj and let A∈LðEÞ. Then, the following statements hold:

(1). For any ε > 0, we have σap,ε(A) ⊆ σε(A).

(2). σap(A) 5
T

ε>0
σap,ε(A);

(3). For all ε1 and ε2 such that 0 < ε1 < ε2, we have σapðAÞ⊂ σap;ε1ðAÞ⊂ σap;ε2ðAÞ;

(4). For all μ ∈ K and ε > 0, we have σap,ε(A þ μIE) 5 σap,ε þ μ;
(5). For each μ ∈ Knf0g and ε > 0, we have σap,jμjε(μA) 5 μσap,ε(A).
As a particular case of Theorem 3.10, we have:

Theorem 4.4. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj, and let A∈LðEÞ and ε > 0. Then, we have

σap;εðAÞ ¼
[

S∈LðEÞ:kSk<ε
σapðAþ SÞ:

As a particular case of Theorem 3.11, we have:

Theorem 4.5. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A; S ∈LðEÞ be such that kSk < ε. Then, we have

σap;ε−kSkðAÞ⊆ σap;εðAþ SÞ⊆ σap;εþkSkðAÞ:

Definition 4.6. Let E be an ultrametric Banach space over a spherically complete field K
such that kEk⊆ jKj and let A∈LðEÞ. The essential approximate spectrum σeap(A) of A is
defined by

σeapðAÞ ¼
\

C∈CcðEÞ

σapðAþ CÞ:

As a particular case of Definition 3.13, we have:

Definition 4.7. Let E be an ultrametric Banach space over a spherically complete field K
such that kEk⊆ jKj, let A∈LðEÞ and ε > 0. The essential approximate pseudospectrum
σeap(A) of A is defined by

σeap;εðAÞ ¼
\

C∈CcðEÞ

σap;εðAþ CÞ:

As a particular case of Proposition 3.14, we have:
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Proposition 4.8. Let E be an ultrametric Banach space over a spherically complete fieldK such
that kEk⊆ jKj. Let A∈LðEÞ. Then, the following statements hold:

(1). σeap(A) 5
T

ε>0
σeap,ε(A).

(2). For all ε1 and ε2 such that ε1 < ε2, we have σeapðAÞ⊂ σeap;ε1ðAÞ⊂ σeap;ε2ðAÞ.

(3). σeap,ε(A þ C) 5 σeap,ε(A), for each C ∈ CcðEÞ.
In the next theorem, we give a characterization of the essential approximate pseudospectra of
bounded linear operators by means of ultrametric semi-Fredholm operators.

Theorem 4.9. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A∈LðEÞand ε> 0.Then λ∉σeap,ε(A) if and only if for each B∈LðEÞ such
that kBk < ε, we have A þ B � λIE ∈ Φþ(E) and ind(A þ B � λIE) ≤ 0.
Proof. It is a particular case of Theorem 3.15. ,

Remark 4.10. From Theorem 4.9, we get

σeap;εðAÞ ¼
[

B∈LðEÞ:kBk<ε
σeapðAþ BÞ:

From Proposition 4.8, we have.

Corollary 4.11. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A∈LðEÞ and ε > 0. Then, we have

σeapðAÞ ¼ lim
ε→0

\

C∈CcðEÞ

σap;εðAþ CÞ ¼
\

ε>0

[

B∈LðEÞ:kBk<ε
σeapðAþ BÞ

 !

:

Theorem 4.12. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A∈LðEÞ and ε > 0. Then, we have

σeap;εðAÞ ¼
\

F∈FþðEÞ

σap;εðAþ FÞ:

Remark 4.13. (i) From Theorem 4.12, σeap,ε(A þ C) 5 σeap,ε(A), for each C ∈FþðEÞ. (ii) Let
J(E) be a subset of LðEÞ. If CcðEÞ⊂ JðEÞ⊂FþðEÞ, then we have

σeap;εðAÞ ¼
\

C∈JðEÞ

σap;εðAþ CÞ

and

σeap;εðAþ CÞ ¼ σeap;εðAÞ for each C ∈ JðEÞ:

As a particular case of Theorem 3.20, we have:
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Theorem 4.14. Let E be an ultrametric Banach space over a spherically complete field K such
that kEk⊆ jKj. Let A; S ∈LðEÞand ε> 0 be such that kSk< ε.Then, we have (i) σeap,ε�kSk(A)
⊆ σeap,ε(A þ S) ⊆ σeap,εþkSk(A); (ii) For any λ; μ ∈ K and μ ≠ 0, we have

σeap;εðλIE þ μAÞ ¼ λþ μσeap;εjμjðAÞ:

References

1. Serre JP. Endomorphismes compl�etement continus des espaces de Banach p-adiques. Publ Math
Inst Hautes �Etudes Sci. 1962; 12(1): 69-85. doi: 10.1007/bf02684276.

2. Gruson L. Th�eorie de Fredholm p-adique. Bull Soc Math France. 1966; 94: 67-95.

3. Nadathur KS. Linear operators between nonarchimedean Banach spaces. Dissertations 8, Western
Michigan University, 1973.

4. Schikhof WH. On p-adic compact operators, report 8911, department of Mathematics. Nijmegen:
Catholic University; 1989. 1-28.

5. Perez-Garcia C. Semi-Fredholm operators and the Calkin algebra in p-adic analysis. I–II. Bull Soc
Math Belg S�er B. 1990; 42: 69-101.

6. Araujo J, Perez-Garcia C, Vega S. Preservation of the index of p-adic linear operators under
compact perturbations. Compositio Math. 1999; 118(3): 291-303. doi: 10.1023/a:1001561127279.

7. Perez-Garcia C, Vega S. Perturbation theory of p-adic Fredholm and semi-Fredholm operators.
Indagt Math. 2004; 15(1): 115-28. doi: 10.1016/s0019-3577(04)90009-2.

8. Vega S. Compact perturbations of p-adic operators with finite codimensional range. p-adic
functional analysis (Ioannina, 2000), 301–307. In: Lecture Notes in Pure and Applied Mathematics.
New York: Dekker; 2001. 222.

9. Diagana T, Ramaroson F. Non-Archimedean operator theory. Springer Briefs in Mathematics.
Cham: Springer; 2016.

10. Kiyosawa T. Banach’s closed range theorem and Fredholm alternative theorem in non-
archimedean Banach spaces. Ill J Math. 1984; 28(3): 353-69. doi: 10.1215/ijm/1256046064.

11. Ammar A, Bouchekoua A, Jeribi A. Pseudospectra in a non-archimedean Banach space and
essential pseudospectra in Eω. Filomat. 2019; 33(12): 3961-76. doi: 10.2298/fil1912961a.

12. Ammar A, Bouchekoua A, Lazrag N. The condition ε-pseuospectra on non-Archimedean Banach
space. Bol Soc Mat Mex. 2022; 28(2): 1-24.

13. Elamrani A, Ettayb J, Blali A. On pencil of bounded linear operators on non-archimedean Banach
spaces. Bol Soc Paran Mat. 2024; 42: 1-10. doi: 10.5269/bspm.62420.

14. Elamrani A, Ettayb J, Blali A. Pseudospectrum and condition pseudospectrum of non-
archimedean matrices. J Prime Res Math. 2022; 18(1): 75-82.

15. Rooij ACMV. Non-Archimedean functional analysis. In: Monographs and Textbooks in Pure and
Applied Mathematics. New York: Marcel Dekker; 1978. 51.

16. Henriquez HR, Navarro S, Aguayo J. Closed linear operators betwen nonarchimedean Banach
spaces. Indagt Math. 2005; 16(2): 201-14.

17. Ellis R. The Fredholm alternative for non-Archimedean fields. J Lond Math Soc. 1967; 42(1): 701-5.
doi: 10.1112/jlms/s1-42.1.701.

18. Ingleton AW. The Hahn-Banach theorem for non-Archimedean valued fields. Proc Cambridge
Philos Soc. 1952; 48(1): 41-5. doi: 10.1017/s0305004100027353.

19. Schechter M. Principles of functional analysis. In: Graduate Studies in Mathematics. Providence:
American Mathematical Society; 2002. 36.

Arab Journal of
Mathematical

Sciences

https://doi.org/10.1007/bf02684276
https://doi.org/10.1023/a:1001561127279
https://doi.org/10.1016/s0019-3577(04)90009-2
https://doi.org/10.1215/ijm/1256046064
https://doi.org/10.2298/fil1912961a
https://doi.org/10.5269/bspm.62420
https://doi.org/10.1112/jlms/s1-42.1.701
https://doi.org/10.1017/s0305004100027353


20. Jeribi A, Moalla N. A characterization of some subsets of Schechter’s essential spectrum and
application to singular transport equation. J Math Anal Appl. 2009; 358(2): 434-44. doi: 10.1016/j.
jmaa.2009.04.053.

Further reading

21. Blali A, El Amrani A, Ettayb J. A note on pencil of bounded linear operators on non-archimedean
Banach spaces. Methods Funct Anal Topology. 2022; 28(2): 105-9. doi: 10.31392/mfat-npu26_2.
2022.02.

Corresponding author
Jawad Ettayb can be contacted at: ettayb.j@gmail.com

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

AJMS

https://doi.org/10.1016/j.jmaa.2009.04.053
https://doi.org/10.1016/j.jmaa.2009.04.053
https://doi.org/10.31392/mfat-npu26_2.2022.02
https://doi.org/10.31392/mfat-npu26_2.2022.02
mailto:ettayb.j@gmail.com

	Ultrametric Fredholm operators and approximate pseudospectrum
	Introduction
	Preliminaries
	Results
	Bounded cases
	References
	Further reading


