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Abstract
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1. Introduction

In ultrametric operator theory, Serre [1] studied the operator I — A where A is a completely
continuous linear operator on a free Banach space. On the other hand, Gurson [2] lifted this
restriction by working on general ultrametric Banach spaces. Recently, Nadathur [3] extended
and studied some classical results on compact and Fredholm operators on ultrametric Banach
spaces over a spherically complete field [<. Moreover, Schikhof gave a basic theory for compact
and semi-Fredholm operators on ultrametric Banach spaces, for more details, we refer to
Ref. [4]. Furthermore, Perez-Garcia [5] studied the Calkin algebras and semi-Fredholm
operators on ultrametric Banach spaces. The stability of Fredholm operators and semi-
Fredholom operators under smallest perturbation of operators and under compact operators on
ultrametric Banach spaces were proved by Araujo, Perez-Garcia and Vega [6-8)]. There are
many studies on ultrametric Fredholm operators, see Refs. [1-3,5,6,8-10].

The pseudospectra of bounded linear operators and the pseudospectra of bounded linear
operator pencils and the condition pseudospectra of matrices and bounded linear operators
were extended and studied by several authors, see Refs. [11-14].

In this paper, we demonstrate some results on Fredholm operators on ultrametric Banach
spaces. On the other hand, we introduce and study the approximate pseudospectra of closed and
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densely defined linear operators on ultrametric Banach spaces. In particular, we prove that the
approximate pseudospectra associated with various e are nested sets and that the intersection of
all the approximate pseudospectra is the approximate spectrum. On the other hand, we
introduce the essential approximate pseudospectra and we study some of its properties.

Throughout this paper, E, F and G are infinite-dimensional ultrametric Banach spaces
over a complete ultrametric valued field I with a non-trivial valuation |- |, £(E, F) denotes
the set of all continuous linear operators from E'into F, I; is the identity operator on £ and I
is the identity operator on F. If E = F, we have L(E,F) = L(E).If A € L(E), N(4) and R(A4)
denote the kernel and the range of A respectively. For more details see Refs.[9,15]. Recall that,
an unbounded linear operator A: D(A) C E — Fis said to be closed if for each (x,,) € D(A) such
that ||x,, — x|| = 0 and ||Ax,, — y|| » 0asn — oo, for some x € Eand y € F, then x € D(4) and
y = Ax. A is called densely defined if D(A) is dense in E. The collection of closed linear
operators from E into F'is denoted by C(E, F). If E = F, we put C(E,F) = C(E).

2. Preliminaries
We continue by recalling some preliminaries.

Definition 2.1. [7] We say that A € L(E, F) has an index when both a(4) = dim MA4) and
B(A) = dim(F/R(A)) are finite. In this case, the index of the linear operator A is defined as
mdA) = a(A) — pA).

Definition 2.2. [7]Let A € L(E,F). A is said to be an upper semi-Fredholm operator if a(A)

is finite and R(A) is closed. The set of all upper semi-Fredholm operators from E into F is
denoted by ®_ (£, F).

Definition 2.3. [7]Let A€ L(E,F), A is said to be a lower semi-Fredholm operator if (4) is
finite. The set of all semi-Fredholm operators from E into F'is denoted by ®_(E, F).
The set of all Fredholm operators from E into F'is defined by

®(E,F) = &, (E,F) N ®_(E, F).

Definition 2.4. [15]Let E and F be two ultrametric Banach spaces over <. A linear map A: E
— F'is said to be compact if A(Bg) is compactoid in F, where Br = {x € E! ||x|| < 1}.
The collection of all compact operators from E into F'is denoted by K(E, F).

Definition 2.5. [9] Let A€ L(E,F). A is called an operator of finite rank if R(A) is a finite
dimensional subspace of F.

Theorem 2.6. [15] Let A€ L(E, F). Then A is compact if and only if for each & > 0, there
exists an operator S € L(E, F) such that R(S) is finite-dimensional and ||A — S| <e.

Definition 2.7. [9] Let E be an ultrametric Banach space and let S€ £(E). S is said to be
completely continuous if, there exists a sequence of finite rank linear operators (4,,) such that
|14, — S| = 0asn — oo.

The collection of all completely continuous linear operators on E is denoted by C.(E).

Example 2.8. [9] Classical examples of completely continuous operators include finite rank
operators.

Theorem 2.9. [12] Suppose that K is spherically complete. Then, for each A € ®(E, F) and
KeC.(EF), A+ K e ®F, F) and ind A + K) = ind(A).

Theorem 2.10. [16] Assume that E, F are ultrametric Banach spaces. Let A:D(A) CE — Fbe
a surjective closed linear operator. Then A is an open map.



Let A: D(A) C E — F. When the domain of A is dense in E, the adjoint operator A’ of A is
defined as usual. Specifically, the operator A”: D(A’) C F' — E’ satisfies

(Ax, ¥) = (x, AY)
for all x € D(A), ¥’ € D(A"). As in the classical case, the following property is an immediate

consequence of the definition.

Proposition 2.11. [16] Let A be a linear operator with dense domain. Then A’ is a closed
linear operator.

Proposition 2.12. [16] Let A be a linear operator with dense domain. Then the following
statement holds:

!

R(A)" =N(4') = (F/R(A))

For more details on bounded linear operators, see Ref. [17].

Theorem 2.13. [18] Let E be an ultrametric Banach space over a spherically complete field
IK. For each x € E\{0}, there is X' € E’ such that x'(x) = 1 and ||x'|| = x| "

Lemma 2.14. [19] Let E be an ultrametric normed vector space over a spherically
complete field I, and suppose that E = N @ E,, where Eq is a closed subspace and N is finite
dimensional. If E; is a subspace of E containing E, then E; is closed.

Definition 2.15. [20] Let E and F be two ultrametric Banach spaces and let A € L(E, F).

(1).The operator A is called Fredholm perturbation if A + B € ®(E, F) whenever
Be @k, F).

(2).A s called an upper (resp. lower) semi-Fredholm perturbation A + B € ®_(E, F) (resp.
A + B € ©_(E, F)) whenever B € ®_(E, F) (resp. B € ®_(E, F)).

We denote by F(E, F) the set of Fredholm perturbations and by F , (E, F) (resp. F_(E, F))
the set of upper semi-Fredholm (resp. lower semi-Fredholm) perturbations. For £ = F, we put
F(EF)=FE),F(E,F)=F (E) and F_(E,F)=F_(E). The proof of the next
proposition is similar to the classical case, see Ref. [20].

Proposition 2.16. [20] Let E be an ultrametric Banach space over a spherically complete field
K. Q) IfAe®E)andF € F(E), then A + F € ®(E) and ind(A + F) = ind(A). (i) If A € @ (E)
and Fe F (E), then A + F € ® (E) and ind(A + F) = ind(4).

The proof of the next theorem is similar to the classical case, see Ref. [20].

Theorem 2.17. [20] Let E be an ultrametric Banach space over K. Let A € ®_ (E). Then the
following statements are equivalent: (i) ind(A) < 0; (ii) A can be expressed in the form
A =S+ Kwhere KeC,(E), and S € C(E) is an operator with closed range with a(S) = 0.

Theorem 2.18. [3] Let E and F be two ultrametric Banach spaces over a spherically complete
field K. Let A€ L(E,F). If there is Ay, A1 € L(F,E) such that AjA—Ip€C.(E) and
AA, —Ir €C.(F). Then A € ®(E, F).

Theorem 2.19. [3] Let E and F be two ultrametric Banach spaces over a spherically complete
field K. Let A € ©(E, F), then thereis Ay € L(F,E) such that AyA — Ig and AAg — Ir have
finite dimensional images.
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Theorem 2.20. [3] Let E, F and G be three ultrametric Banach spaces over a spherically
complete field K. If A € ®E, F) and B € ®F, G), then BA € ®FE, G) and
nd(BA) = ind(A) + ind(B).

Theorem 2.21. [3] Let E be an ultrametric Banach space over a spherically complete field K.
Let A€ C.(E) and 2 € K\{0}, then Alg — A € ®(E) and indAlg — A) = 0.

Theorem 2.22. [9] If A,BeC./(E) and C,De L(E), then (1)) A+ BeC.(E);, (i1)
AC,DA €C.(E).

Lemma 2.23. [12] Let E and F be two ultrametric Banach spaces over a spherically
complete field K. Let A€ L(E,F) and KeC.(E,F). Then A + K € ®E, F) and
mdA + K) = nd(A) + indK).

Corollary 2.24. [16] Suppose that E, F are ultramtric Banach spaces. Let A be a closed linear
operator with dense domain. If R(A) is a closed subspace which has the weak extension property
in F, then RA") = N(A)*.

In the next proposition, we assume that A’ exists.

Proposition 2.25. [3] Let E and F be two ultrametric Banach spaces over a spherically
complete field K. Let A € ®(E, F), then A' € ®F, E') and ind(A') = —ind(A).

3. Results
As a simple consequence of Theorems 2.18 and 2.20, we have:

Corollary 3.1. Let E and F be two ultrametric Banach spaces over a spherically complete field
K. Let A € D(E, F) andlet Ay € L(F, E) be such that AjA — Ipand AAy — Irare of finite rank.
Then Ay € ®©(F, E) and ind(Ao) = —ind(A).

Proof. Since ApA — Ig and AAy — Ir are of finite rank, we get ApA — Iz €C.(E) and
AAy—1Ir €C.(F). Using Theorem 2.18, we have A, € ©(F, E). Since Ay € ®(F, E) and
A € ®(E, F). By Theorem 2.20, ApA € ®(E) and ind(ApA) = ind(A) + ind(Ay). From Theorem
2.21,ind(AgA) = ind(A) + ind(Ao) = ind(lp + B) = 0, where B = ApA — Iis of finite rank. []

Theorem 3.2. Let E, F and G be three ultrametric Banach spaces over a spherically complete
field K. Let A€ L(E,F)andBe L(F, G) suchthat BA € ®(E, G). Then A € ©(E, F)if and only
iy Be @(F, G).

Proof. Suppose that A € ®(E, F). By Theorem 2.19, there is Ay € L(F, E) such that AgA — I
and AA — Irare of finite rank. By Theorem 2.18, Ay € ®(F, E). Set C = AAy — Ir, then BC =
BAAy — B. Since BA € ®(E, G). From Theorem 2.20, BAA, € ®(F, G). From Example 2.8,
CeC.(F). By Theorem 2.22, we have BCeC.(F,G). From Lemma 223, B € ®(F, G).
Similarly we obtain that if B € ®(F, G), hence A € ®(E, F). OJ

Theorem 3.3. Let E, F and G be three ultrametric Banach spaces over a spherically complete
field K. Let Ae L(E,F) and Be L(F, G) be such that BA € ®(E, G). If a(B) is finite, then
A e O, F) and B € ®(F, G).

Proof. Since R(BA) C R(B), by Lemma 2.14, we get that R(B) is closed. Since R(BA) C R(B) and
a(B) is finite, we have f(B) < S(BA). Using the fact that a(B) is finite, we get B € ®(F, G). By
Theorem 3.2, we have A € ®(F, F). O

Theorem 3.4. Let E, F and G be three ultrametric Banach spaces over a sphevically complete
field K. Let Ae L(E,F) and Be L(F,G) be such that BA € ®(E, G). If BA) is finite, then
A € O, F) and B € ©(F, G).

Proof. 1f BA € ®(E, G), then by Proposition 2.25, A'B' € ®(G, E'). Since a(A) = B(A) is finite,
from Theorem 3.3, we get A’ € ®(F', E') and B' € ®(G, F’). Furthermore, a(B") is finite. Also



a(B) < a(B") isfinite.

Using Theorem 3.3, we get A € ®(E, F) and B € ©(F, G). [J

Lemma 3.5. Let E be an ultrametric Banach space over a sphevically complete field K. Let

Ay, ..., A, €L(E) be such that for all i, j € {1, ..., n}, AA; = AA. Suppose that
A=A--A, e ®E). Then forallk € {1, ...,n}, A, € ®E).
Proof. One can see that for each & € {1, ..., n}, N4y C NA) and RA) C RA,). If
A=A -A,e®E)thenforallke {1,...,n},alA,) and f(A,) are finite. Since R(A) is closed
and S(B) is finite and K is spherically complete, then there is a finite-dimensional subspace M
of Esuch that E = R(A) ® M.Sinceforany k€ {1, .. .,n}, R(A) C R(A}), from Lemma 2.14, we
have R(A,) is closed foreach k € {1, ..., n}. O

Theorem 3.6. Let E and F be two ultrametric Banach spaces over a spherically complete field
K. Then A € ©E, F), if and only if A € ©_(E, F) and A' € ®_(F, F).

Proof. From Proposition 2.25, if A € ®(E, F), then A’ € O(F, E'). Thus A € @ (£, F) and
A e® (F,E). Conversely,if A € @ (E,F)and A’ € ®_(F, E), then a(A) is finite and R(A4) is
closed. From the fact that A’ € @ (F", I), we get a(A’) = B(A) is finite. Thus A € ®(E, F). (I
We introduce the following definitions:

Definition 3.7. Let E be an ultrametric Banach space over a spherically complete field K
such that |E|| C |K|. Let A € C(E) be closed and densely defined. The approximate spectrum
o.p(A) of A on E'is defined by

op(A)={1ek: inf |(A-Ag)x| =0}

xeD(A),||x||=1

Definition 3.8. Let E be an ultrametric Banach space over a spherically complete field K
such that ||E|| C|K| Let A€C(E) be closed and densely defined, and let ¢ > 0. The
approximate pseudospectrum o, (A) of A on E'is defined by

welA) = 04(A reK: inf A — g .
Ope(A) =04(A)u{re xeD(E;HxHﬂH( )| < e}

Proposition 3.9. Let E be an ultrametric Banach space over a spherically complete field I such
that |E||C|K|. Let A€C(E) be closed and densely defined. Then, the following
statements hold:

(1). Forany e >0, we have 6, (A) C 6,(A);

2. 0ufd) = () 00 lA)

(3). Forall &; (md & such that 0 < &) < &5, we have 6,5(A) COupe(A) COwpe,(A);
(4). ForallpeKand e >0, we have 6,p A + ulg) = 04pe + s

(5). For each p € K\{0} and & > 0, we have 0,p |u:(UA) = oz (A).
Proof.

(1). Let A¢o,(A). Then ||(A —Alz)™"|| <&~%. On the other hand,
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1 B >
. = sup (o)
infrenqa, -1 || (A — Ale)x|| xeD(A), =1 <H (A = Ap)x||

1]l )
= Sup |
eD(A)\{0} <H (A — AMlp)x||

(H(A - /IIE)_luH)
= S \— |
ueE\{0} HMH

H(A —/UE)‘1H <el,

Thus A¢06,p £(A).

(2). From Definition 3.8, for each & > 0, we see that 6,,,(A4) C 64 A). Thus 6,4(4) Ce>004p.£A).
Conversely, if A €¢>004,£(4), then for each & > 0, 1 € 6, (A). If A € 6,4,(A), there is nothing to
prove. If A¢6,,(A), then A € {1 € K : infyep(a) -1 || (A — A )x|| < €}. Taking the limitas & —
07", we get inf, ¢ pay, v =1//(4 — Apx|| = 0, which is a contradiction. Hence 1 € 6,4(A).

(3) Let &1 and &2 be such that 0 < &1 < €. If 1€ Oup.e (A), then infx c D(A),\|x||=1H(A — ZIE)
x|| < &1 < €2 Thus A€ 06,4 .,(A).

(4). If A € 64p(A + plp), then either A € 6,,(A + ulp) or inf, ¢ puay =14 — A — wip)
x| < e Thus 1 € p + 6,4 (A). Similarly, if 1 € p + 6,45 (A), then A € 6, (A + plp).

(5). If 2 € 04 )e(1A), then

inf | _ _ ; _
went) o1 (HA = AlE)x]| xen(g{ﬁxu:l (MA — Ap)x |,
= in (A—&I >x < |ule
MxeD(A),HxH:l /,tb ' < IHE

Thus ﬁ €04:(A). Then G e(HA) C PO,y £(A). Similarly we get Po,p, o(A) C Gap, juje(BA).

Hence G,p |je(HA) = HOape(A). O

Theorem 3.10. Let E be an ultrametric Banach space over a spherically complete field I such
that |E|| €| K|, and let A € C(E) be closed and densely defined, and let € > 0. Then,

ope(A)= | ou(A+S)
SeL(E):||S||<e

Proof. Let A € Usep ()5 <c0ar (A + S). Then infy ¢ payjv=1/|A + S — Apx|| = 0. We

will prove that 1 € 6, [(4). From the estimate



(A = A)ull = (A + S — Al )u — Sul| <max{[|(A + S — Alg)ul], || Sul|},

We infer that inf, ¢ pyx)=1//(4 — Agx|| < e. Conversely, suppose that 1 € 6, (A). We
discuss two cases. First case: If 2 € 6,4(A), then it suffices to put S = 0. Second case: If
A¢0,p(A), then there is y € E\{0} such that ||y|| = 1and ||[(A — AgW|| < &. By Theorem 2.13,
there exists ¢ € E' such that ¢(¥) = 1 and ||¢|| = |y "' = 1 Define S on E by

Sy =—¢(x)(A — Ag)y forallxeE.

Then, S is linear and
[1Sxl| = lp (A — ALp)y|| < ellx]|.

Then, ||S|| < e. Furthermore, inf, ¢ puy jv=1]|4 + S — Alpx|| = 0, because
weodnE NS =AI0)x <A 4 5 = ALy <[1(A = Me)y — ) (A — ALg)y]| =0,

fory e E.

Theorem 3.11. Let E be an ultrametric Banach space over a spherically complete field K such
that ||E|| C|K|. Let A € C(E) be closed and densely defined, andlet € > 0. Let S € L(E) be such
that ||S|| < €. Then,

Oape-|s) (A) COupe(A + S) COuperys)(A)-

Proof. If 2 € 64,—s(A), then by Theorem 3.10, there is B e £L(E) such that ||B|| < & —
|IS]| and
o A€0p(A+B)=04((A+S)+ (B-29)).

Since ||B — S|| < ||1B]| + ||S|| < &, by Theorem 3.10, we get A € 0, (A + S). Similarly, if
S Gap‘g(A + S), we obtain that 1 € O-KIP78+HSH(A)' O

Definition 3.12. Let E be an ultrametric Banach space over a spherically complete field K
such that ||E|| C|K], and let A € C(E) be closed and densely defined. Then, the essential
approximate spectrum 6,,4,(A4) of A is defined by

oup(A) = () ow(A+0).

CeC,.(E)

Definition 3.13. Let E be an ultrametric Banach space over a spherically complete field K
such that ||E|| € | K|, and let A € C(E) be closed and densely defined, and let € > 0. Then the
essential approximate pseudospectrum 6,,,(4) of A is defined by
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Oupe(A) = () Oupe(A+C).

CeC.(E)

Proposition 3.14. Let E be an ultrametric Banach space over a spherically complete field K
such that ||E| C|K|. Let A€C(E) be closed and densely defined. Then, the following
statements hold.:

(—Z) Geap(A) = noo-eap,e(A);
(2). For all &1 and &5 such that &1 < €5, we have 6,4p(A) C Cogp e, (A) C Cogpe,(A);

(3). CeapelA + C) = 6oap (A), for each CeC,(E).
Proof.

(1). Let A€06,4(A). Then, there is C € C.(E) such that A¢ec,, (A + C). Hence A¢6,,(A).
Thus 6.4p(A) CNe>00eapelA). Conversely, if 1 €()e>00eap(A), then for each & > 0,
A € 0u4p(A). Hence, for all CeC.(E) such that 1 € 64, (4 + (). Thus, inf,

e pys=1[|(A + C — Alpx|| < e. Taking the limit as & — 0, we get infy ¢ =1l
A+ C — Mpx| = 0. Hence 1 € 6,45(A).

(2). If 1€ 0. (A), then for all CeC(E) such that inf, ¢ puyju=1lA + C — Up)
x|| < &1 < €2. Thus A€ 6,4p,(A).

(3). Follow from Definition 3.13.
In the next theorem, we give a characterization of the essential approximate pseudospectrum
by means of ultrametric semi-Fredholm operators.

Theorem 3.15. Let E be an ultrametric Banach space over a spherically complete field K such
that |E|| C |IK|. Let A € C(E) be closed and densely defined, and let € > 0. Then A&, (A) if
and only if for each Be€ L(E) such that ||B|| < &, we have A + B — Mg € ® (E) and
mdA + B — Mp) <0.

Proof. If A¢6,4p .(A), then there is K € C.(E) such that A¢a,, (A + K). Using Theorem 3.10,
for each B € L(E) such that ||B|| < ¢, we have A¢c,,(A + K + B). Hence for each Be L(E)
such that ||B|| < &, we obtain

A+K+B—-Mped (E)

and

md(A+ K+ B— AE)<0.

From Theorem 2.16, we have
A+B—AMped (F)

and

ind(A + B — ) <0.

Conversely, suppose that for each B € L(E) such that | B|| <&, wehave A + B — A€ ®, (E)
and ind(A + B — Alp) < 0. Then from Theorem 2.17, we get
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where K € C.(E) and C € C(E) with closed range a(C) = 0. Hence Sciences

A+K+B—z=-C 3.1)

and

ind(A +K + B — ) = a(C) = 0.

Since C has a closed range and a(C) = 0, by (3.1), there is M > 0 such that
I(A+ K + B — AMg)x|| > M|x||, foreach x e D(A).

Hence inf, ¢ pa,jx|=1/|(A + K + B — Alp)x|| > M > 0. Thus A¢c,,(A + K + B). Consequently,
lfaeap,e(A)- D

Remark 3.16. From Theorem 3.15, we get

GEaP,E(A) = U Ocap (A + B)

BeL(E):|B|<e

From Definition 3.13 and from Proposition 3.14, we have.

Corollary 3.17. Let E be an ultrametric Banach space over a spherically complete field K such
that ||E|| C |K|. Let A € C(E) be closed and densely defined, and let € > 0. Then, we have

O'eap(A) = 11rr(} ﬂ Gap.s(A +C) = m(
Ve (B) £>0 \BeL(E):|B|<e

Oeap(A + B)) .

Theorem 3.18. Let E be an ultrametric Banach space over a spherically complete field K such
that |E|| C|K|. Let A € C(E) be closed and densely defined, and let € > 0. Then, we have

O'eapfs(A) = ﬂ GapAe(A +F)

FeF,(E)

Proof. If 2 ¢ ﬂFeﬂ(E)aap,g(A + F), then there is F € 7, (E) such that i¢o,, (A + F). By
Theorem 3.10, for each B € L(E) with ||B|| < ¢, we have A¢6,,(A + F + B). Hence, for each

Be L(E) such that ||B|| < ¢, we have
A+F+B-Mped (E),

and
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md(A+F + B — Alg)<0.
From Theorem 2.16, we have
A+B—Mped, (F)

and
md(A + B — M) <0.
By Theorem 3.15, we see that A¢6,,, (A). Conversely, from C.(E) c F, (E), we infer that

() OwcA+F)C [ 0upelA+F) = upe(A).

FeF(E) FeC.(E)

Remark 3.19. (i) From Theorem 3.18, we have 6,4y (A + C) = 6,4y (A), for each C e F . (E).
(ii) Let J(E) be a subset of L(E). If C.(E) cJ(E) c F . (E), then we have

O-QapAe(A) - m O-HP.E(A + C)’
CeJ(E)

and

Coape(A+ C) = 6,4p.(A) for each CeJ(E).

Theorem 3.20. Let E be an ultrametric Banach space over a spherically complete field K such
that ||E|| C |K|. Let A € C(E) be closed and densely defined, andlet € > 0. Let S € L(E) be such
that ||S|| < e. Then, we have (i) Goape—|s)(A) C CogpelA + S) C Ceap s A); (1) For any
Ap€land p # 0, we have

Ceape(AMlp + pA) = 2+ HOeap e|y| (A).

Proof. Follow from Theorem 3.11 and Proposition 3.9. (J

4. Bounded cases
First, we introduce the following definitions.

Definition 4.1. Let E be an ultrametric Banach space over a spherically complete field K
such that | E]| € |IK|. Let A € L(E). The approximate spectrum o,,(A4) of A on E'is defined by

op(A) = {ieK: inf ||(A—alg)x|| =0},

reD(A), lxll=1

Definition 4.2. Let E be an ultrametric Banach space over a spherically complete field IK be
such that ||E|| C |IK|. Let A € £(E) and & > 0. The approximate pseudospectrum o, .(4) of A
on E is defined by
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(A = Ap)x|| < e}

Gupe(A) = 6p(A) U {z ekK: inf

x€D(A), ||x[|=1

As a particular case of Proposition 3.9, we have:

Proposition 4.3. Let E be an ultrametric Banach space over a sphevically complete field K such
that |E|| C|K| and let A € L(E). Then, the following statements hold:

(1). Forany e > 0, we have 0,4 (A) C 0.(A).
(2) gap(A) = mogup,s(A);
(3). For all &1 and €5 such that 0 < &1 < &5, we have 645(A) C Cupe,(A) COgpe,(A);

(4). Forallpe Kande >0, we have 6,5 (A + ulp) = 64pe + 1,

(5). For each y € K\{0} and & > 0, we have 6, |,-(UA) = pi0p A).
As a particular case of Theorem 3.10, we have:

Theorem 4.4. Let E be an ultrametric Banach space over a spherically complete field K such
that ||E|| € |K|, and let A € L(E) and & > 0. Then, we have

opeA) = |J oud+9).
SeL(E):||S||<e

As a particular case of Theorem 3.11, we have:

Theorem 4.5. Let E be an ultrametric Banach space over a spherically complete field K such
that ||E|| C|K|. Let A, S € L(E) be such that ||S|| < €. Then, we have

Oape-||5)|(A) S Oupe(A +S) COuperys) (A).

Definition 4.6. Let E be an ultrametric Banach space over a spherically complete field K
such that ||E]| € |IK| and let A € L(E). The essential approximate spectrum 6,,4,(4) of A is
defined by

Oeap(A) = m op(A +C).

CeC.(E)

As a particular case of Definition 3.13, we have:

Definition 4.7. Let E be an ultrametric Banach space over a spherically complete field K
such that ||E|| C|K|, let A€ L(E) and ¢ > 0. The essential approximate pseudospectrum
60ap(A) of A is defined by

Oupe(A) = () Oape(A+C).

CeC.(E)

As a particular case of Proposition 3.14, we have:
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Proposition 4.8. Let E be an ultrametric Banach space over a spherically complete field < such
that |\E|| C|K|. Let A € L(E). Then, the following statements hold:

(1) Geap(A) = moo-eap,s(A)-
(2). For all & and €5 such that e, < €3, we have 644y (A) C Cogpe(A) C Cogp e, (A).

(3). Oeap A + O) = Gpup A), for each C e C,(E).
In the next theorem, we give a characterization of the essential approximate pseudospectra of
bounded linear operators by means of ultrametric semi-Fredholm operators.

Theorem 4.9. Let E be an ultrametric Banach space over a spherically complete field K such
that ||E|| C |K|. Let A € L(E) and € > 0. Then A¢6,qp AA) if and only if for each B € L(E) such
that |B|| < €, we have A + B — Mg € ® (E) and ind(A + B — Mg <0.

Proof. 1t is a particular case of Theorem 3.15. [J

Remark 4.10. From Theorem 4.9, we get
oupeA) = |J Owp(A+B).

BeL(E):||B|<e

From Proposition 4.8, we have.

Corollary 4.11. Let E be an ultrametric Banach space over a sphevically complete field K such
that |[E|| C|K|. Let A € L(E) and € > 0. Then, we have

0 ( Oeap (A + B)> .
= CeC.(E) e>0 \BeL(E):||B||<e

Theorem 4.12. Let E be an ultrametric Banach space over a spherically complete field IS such
that |[E|| C|K|. Let A € L(E) and € > 0. Then, we have

Oeape(A) = ﬂ Oupe(A+F).

FeF,(E)

Remark 4.13. (i) From Theorem 4.12, 6,45 (A + C) = 6,4p£(A4), for each C € F_ (E). (ii) Let
J(E) be a subset of L(E). If C.(E) cJ(E) C F . (E), then we have

Oupe(A) = ) Oupe(A+C)
Ce/(E)

and

Ouape(A + C) = Ougp(A) for each CeJ(E).

As a particular case of Theorem 3.20, we have:



Theorem 4.14. Let E be an ultrametric Banach space over a spherically complete field K such
that ||E|| C |K|. Let A, S € L(E) and € > 0 be such that ||S|| < . Then, we have (i) Goqp e 5(A)
C Ooap A +5) C Opuperysi(A); (1) For any A, p € K and p # 0, we have

Ugapﬂg()«IE + IMA) =1+ HOeap elu| (A)
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