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Abstract

Purpose — Fractional order nonlinear evolution equations (FNLEESs) pertaining to conformable fractional
derivative are considered to be revealed for well-furnished analytic solutions due to their importance in the
nature of real world. In this article, the autors suggest a productive technique, called the rational fractional
(D£G/G)-expansion method, to unravel the nonlinear space-time fractional potential Kadomtsev—Petviashvili
(PKP) equation, the nonlinear space-time fractional Sharma—Tasso—Olver (STO) equation and the nonlinear
space-time fractional Kolmogorov—Petrovskii-Piskunov (KPP) equation. A fractional complex transformation
technique is used to convert the considered equations into the fractional order ordinary differential equation.
Then the method is employed to make available their solutions. The constructed solutions in terms of
trigonometric function, hyperbolic function and rational function are claimed to be fresh and further general in
closed form. These solutions might play important roles to depict the complex physical phenomena arise in
physics, mathematical physics and engineering.

Design/methodology/approach — The rational fractional (D‘g G/G)-expansion method shows high
performance and might be used as a strong tool to unravel any other FNLEEs. This method is of the
form U (&) = 310ai(DEG/G)' /321 bi(DEG/G)'.

Findings — Achieved fresh and further abundant closed form traveling wave solutions to analyze the inner
mechanisms of complex phenomenon in nature world which will bear a significant role in the of research and
will be recorded in the literature.

Originality/value — The rational fractional (Dg G/ G)-expansion method shows high performance and might
be used as a strong tool to unravel any other FNLEEs. This method is newly established and productive.
Keywords The rational fractional(DgG /G) -expansion method, Complex fractional transformation,
Conformable fractional derivative, Closed form solution, Fractional order nonlinear evolution equation
Paper type Research paper

1. Introduction

Fractional calculus originating from some speculations of Leibniz and L'Hospital in 1695 has
gradually gained profound attention of many researchers for its extensive appearance in
various fields of real world. Exact traveling wave solutions to fractional order nonlinear
evolution equations (FNLEEs) are of fundamental and important in applied science because of
their wide use to depict the nonlinear fractional phenomena and dynamical processes of nature
world. The FNLEEs and their solutions in closed form play fundamental role in describing,
modeling and predicting the underlying mechanisms related to the biology, bio-genetics,
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physics, solid state physics, condensed matter physics, plasma physics, optical fibers,
meteorology, oceanic phenomena, chemistry, chemical kinematics, electromagnetic, electrical
circuits, quantum mechanics, polymeric materials, neutron point kinetic model, control and
vibration, image and signal processing, system identifications, the finance, acoustics and fluid
dynamics [1-3]. The closed form wave solutions of these equations [4-6] are greatly helpful to
realize the mechanisms of the complicated nonlinear physical phenomena as well as their
further applications in practical life. Some attractive powerful approaches take into account in
the recent research area related to fractional derivative associated problems [7-9]. Therefore, it
has become the core aim in the research area of fractional related problems that how to develop
a stable approach for investigating the solutions to FNLEEs in analytical or numerical form.
Many researchers have offered different approaches to construct analytic and numerical
solutions to FNLEEs as well as integer order and put them forward for searching traveling
wave solutions, such as the He-Laplace method [10], the exponential decay law [11], the
reproducing kernel method [12], the Jacobi elliptic function method [13], the (G /G)-expansion
method and its various modifications [14-18], the exp-function method [19], the sub-equation
method [20, 21], the first integral method [22], the functional variable method [23], the modified
trial equation method [24], the simplest equation method [25], the Lie group analysis method
[26], the fractional characteristic method [27], the auxiliary equation method [28, 29], the finite
element method [30], the differential transform method [31], the Adomian decomposition
method [32, 33], the variational iteration method [34], the finite difference method [35], the
homotopy perturbation method [36] and the He’s variational principle [37], the new extended
direct algebraic method [38, 39], the Jacobi elliptic function expansion method [40], the
conformable double Laplace transform [41] etc. But each method does not bear high acceptance
for the lacking of productivity to construct the closed form solutions to all kind of FNLEEs.
That is why; it is very much indispensable to establish new techniques.

In this study, we offer a newly established technique, called the rational fractional
(D¢ G/ G)-expansion method [42], to investigate closed form analytic wave solutions to some
FNLEES in the sense of conformable fractional derivative [43]. This effectual and reliable
productive method shows its high performance through providing abundant fresh and
general solutions to the suggested equations. The obtained solutions might bring up their
importance through the contribution to analyze the inner mechanisms of physical complex
phenomena of real world and make an acceptable record in the literature.

2. Preliminaries and methodology

2.1 Conformable fractional derivative

A new and simple definition of derivative for fractional order introduced by Khalil ef al [43]is
called conformable fractional derivative. This definition is analogous to the ordinary

derivative
dy _ . v te) —y()
dx =0 €

I

where y(x) : [0, o] > R and x > 0. According to this classical definition, d(d’i') = na" L

According to this perception, Khalil has introduced a order fractional derivative of y as

(x +ex™) —y(x)
€

Tap(x) = lim v L0<a<l,

If the function y is a differentiable in (0, 7) for » > 0 and lir(r)l T (x) exists, then the
x—=01
conformable derivative at x = 0 is defined as T,y(0) = li%l T,w(x). The conformable
x—0F

integral of y is



ng/(x)z/ VI 4 50,0 < a<l,

tl—a

This integral represents usual Riemann improper integral.
The conformable fractional derivative satisfies the following useful properties [43]:
If the functions #(x) and v(x) are « -differentiable at any point x > 0, for a € (0, 1], then

(1) Tolau+bv) =aTy(u) + 0T4(v) Va, bER.
2 T,(x")=nx""* VneR.

(3) Tu(c) =0, where cis any constant.

@) Ty(uv) = uTy(v) + 0Ty (u).

6) Tulufv) =Tz del)

4

(6) if « is differentiable, then T, (u)(x) = x~% (x).

Many researchers used this new derivative of fractional order in physical applications due to
its convenience, simplicity and usefulness [44—46].

2.2 Methodology

In this subsection, we discuss the main steps of the rational fractional (D¢ G/G)-expansion
method to examine exact traveling wave solutions to FNLEEs. A fractional partial

differential equation in the independent variables ¢, x1, x2, ..., %, is supposed to be as

follows:

F(ul, oty D, Dy, Dy, D) uk,...Diluh...l)i]uk,...) =0 221

where 0 < @, <1, w; = w;(t, x1, X2 ,..., %), 1 =1, 2,3, ..., k are unknown functions,

F is a polynomial in #; and it’s various partial derivatives of fractional order. Maintain the

following steps to unravel Eqn (2.2.1) by the rational fractional (DgG / G)-expansion technique.
Let us consider the nonlinear fractional composite transformation

U = ui(ta X1y X2y v vy xﬂ) = l]l(é)a 52 é(ta X1y X250 vy xn)7 (222)

which reduces Eqn (2.2.1) to the following ordinary differential equation of fractional order
with respect to the variable &

QU ..., U, D¢V, ..., DEU, DL, ..., DEU,...) =0. 2.2.3)

We might take anti-derivative of Eqn (2.2.3) term by term as many times as possible and
integral constant can be set to zero as soliton solutions are sought.

Step 1: Suppose the traveling wave solution of Eqn (2.2.1) can be expressed as follows:

> a(DiG/G)
U@ =———, (2.24)
22 bi(DEG G)

where @; sand b;, s are unknown constants to be determined later and G = G(¢) satisfies
the following auxiliary nonlinear ordinary differential equation of fractional order:

DFG(&) + ADE G(&) + pG(&) =0, (225)

Solutions to
FNLEEs in
mathematical
physics

153




AJMS
27,2

154

where 4, p are arbitrary constants and D{G(&) denotes the conformable fractional
derivative of order a for G(£) with respect to &
The nonlinear fractional complex transformation G(¢) = H(n), n = &*/T(1 + a) reduces
Eqn (2.2.5) into the following second order ordinary differential equation:

H'(n) + AH (n) + pH (n) =0, 2.26)

whose solutions are well-known. Since D¢ G(&) = D¢ H (i) = H (n)D¢n = H (), with the
aid of the solutions of Eqn (2.2.6), we can obtain the solutions of Eqn (2.2.5) as follows:

\//127 C;sinh (M) +Cycosh ( % 1fz)§a> .
(DEG/6) == Hx —5 F—du>0 @27)
Cycosh | Y24 L 0y sinh [ YA2-wE
1COSA\ “5ri7a) 28 (1 +a)

\/72 —C1 Sin< ‘Zﬁylfafa> JrCzCOS( v 4’(4 f;’w>
(DrG/6) =Y I L Pw<o @29

2 ‘ )
dp—r2 e \ Au—i2er
G COS( T(ta) ) +G sm( T(1ta) )
A

Gri+a) 2
Cr(1+a)+Ge 2

(DG/G) = 2 —4p=0 (229)

where C; and C; are arbitrary constants.

Step 2: The positive constant 7 can be determined by taking homogenous balance between
the highest order linear and nonlinear terms appearing in Eqn (2.2.3).

Step 3: Substitute (2.2.4) and (2.2.5) into Eqn (2.2.3) with the value of 2 obtained in step 2, we
obtaina polynomial in (D¢G/G). Setting each coefficient of the resulted polynomial to zero

gives a set of algebraic equations for a; sand b;, s by means of the symbolic computation
software, such as Maple, provides the values of constants.

Step 4: Inserting the values of a; sand b;, sinto (2.2.4) along with (2.2.7)—(2.2.9), the closed
form traveling wave solutions to the nonlinear evolution Eqn (2.2.1) are obtained.

3. Formulation of the solutions

In this section, the exact analytic traveling wave solutions to the nonlinear space-time
fractional potential Kadomtsev—Petviashvili (PKP) equation, the nonlinear space-time
fractional Sharma—Tasso—Olver (STO) equation and the nonlinear space-time fractional
Kolmogorov—Petrovskii—Piskunov (KPP) equation are constructed.

3.1 The nonlinear space-time fractional PKP equation
This well-known equation is given as

1
ZDﬁau+nguDZx“u+zD§au+Df(Dgu):o. (3.11)



With the aid of the fractional compound transformation
(e, y, ) =U(E), E=x+y -+t (312

Eqn (3.1.1) is turned into the following ordinary differential equations of fractional order due
to the variable &

1 a 3 4 a 3 20 20
ZDZ& U+§D5UD§ U—i—l—ng U+cD;"U =0 (3.1.3)
Taking anti-derivative of (3.1.3) yields
DEU+3(DEU)" + (3+ 40D U =0 (3.14)
Considering the homogenous balance to Eqn (3.1.4), the solution (2.2.4) becomes
ay +aD'G/G
U(E) = @ +aDEG/G
bo + biDEG/G

Eqn (3.1.4) together with (3.1.5) and (2.2.5) becomes a polynomial in (D¢ G/G) equating whose
coefficients to zero and solving provides the following outcomes:

(3.1.9)

1 1
setl: -qy = > (a1 b0 — 2b5p + 2by b4 — 2B7), ¢ = 1 (4 — 22 = 3), (3.1.6)
1
where ay, by, b1, Aand y are free parameters.
1
set2: ap =2by, by =0, c = 1 (4u — 22 = 3), (3.1.7)

where ay, by, Aand y are free parameters.
Insert the values appeared in (3.1.6) and (3.1.7) in the solution (3.1.5) provide the following
expressions for exact analytic solutions:

(d] b() — 2[)%,” + 2b0 bl — 2b(2)) + CZID?G/G

Ui(¢) = by (bo + b D2GJG) ’

(3.18)

Us() = %z +2D°G/G, (31.9)

where & = x 4y + {(4u — 2% = 3) /4}/°t.

The expressions (3.1.8) and (3.1.9) along with (2.2.7)—(2.2.9) make available the following
closed form traveling wave solutions in terms of hyperbolic function, trigonometric function
and rational function:

3.1.1 Solution 1. When A% —4u > 0,

. 22— \Y% Pt
Cysinh ( g | TCosh | Sy
i

(d]b() —2b%ﬂ+2b0b1ﬂ—2b(2)) +a ; X —%
Cycos h (—‘ 2]%?;1(},4)&) +Cysin < VZ;?;%E">

Uy (§)=

) /12—aea \/ -t
Cysin (W) +Cacos h <_2r(1+a)
24y
X

2
VAR . \2-apea
Cicos h ( I Ta) ) +GCysin i1 (W

bi| bo+b,

[SIES

(3.1.10)
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Uj(¢) = , (3111)
b (bo + b ( 4”><tanh< '2;1, li}; 5a> %))
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whereé—x+y+{(4/4 2=3) /a1,
When A% —4u < 0,

A V-2
\/_2 _C15m< T(Ta) )+Czcos( e
Au—A
iad X A

2 2
A/ 4 ,1250 . A /4,,,,;250{
Clcos( T (1+a) )*Czsm( T (1+a)

U12 (5): (3.1.12)
_Clsin< ‘2;(1 2 ) +Cycos <—M>
du—a2 2

by | bothy | Vi ;
2z N 12
Cycos ( pyeE ) +Cosin <—21_(1+u)

The choice of ¢; #0, ¢o = 0 gives way

(Lll bo—2b%bl+2b0b1/1—2b%) +a

T (1+a) 2
Ur (&) = . (3113
b <b0 - b ( Xtan( 2?‘”1:(15 > + 2))
where & = JHy+ {(4u— 22 =3)/4}"t.
When 22 —4u = 0,
, (dlbo — 2b%//t + 2b0b1}. — 2bg) +a <% - %)
Uy (¢) = . (3.1.14)
I'(l+a
by (bo + b (e g))
Choosing ¢; = 0, ¢; #0 yields
(dlbo — Zb%Ll + Zb()blll — Zbg) — (%Ta) — %)
U3(&) = (3.1.15)

by (bo by (e - 2)) |

where & = x +y + {(=3) /4}"/°t.



3.1.2 Solution 2. When A2 — 4y > 0,
G smh(M g >+C2cosh(V fa)

(1+a)

2_
U;(§)=?+2 ’12 Y —g . (3116)
0 /72 @ /52 a
G cosh( Zﬁ(lfﬁ‘f ) +G smh( 21’1 lf‘;f)

Assigning ¢; #0, ¢2 = 0 provides

/12 2 a
Uy (&) = L) (ﬂ X tanh <M> - §> , 3.1.17)

bo 2 2F(1 + (1)

where & = Xy {(4u—2*=3)/4}"¢.

When A% —4u < 0,
-G S1n< Vzﬁ” . 7 5,1) + G, cos ( ”zﬁ” - ~ ‘”m)
Vi-F ) w0 )
Us (&) = b— +2[ -5 ©Ly
0 fA, 92 ra . / _ 92 ra
G COS( 2?21;{1)5 ) +G sm( 2;4"/;14:1(1)5 )
Conveying ¢; #0, ¢2 = 0 offers
) Vi — 1 du—22 "\ A
-2 X" x A 1
U; (&) = bo 2( 5 tan( o+ a) +2 , 3.1.19
where & = &+ + {(4u = A2 -3) /43t
When A% — 4y = 0,
3 . @ C2F(1 + a) B /_1
(0 = bo * Z(Clr(l +a)+GCE 2) (3.1.20)
The transmission ¢; = 0, ¢, # 0 puts forward
U3 (e) = ZE 4ol ; 9, (31.21)
where & = x +y + {(=3)/4}"/¢.
3.2 The nonlinear space-time fractional STO equation
Consider the nonlinear space-time fractional STO equation
D+ 34(Df)” + 3pu*Dfu + 3pul?u + PD¥u = 0 (321)
Using the complex fractional transformation
u(x, t) = U(&), € = kY% + cV/t, (322

Eqn (3.2.1) reduces to the following fractional order ordinary differential equation with
respect to the variable &

eDEU + 3PB(DEU) + 3kpUPDEU + 3PUDFU + FDEU =0,  (32.3)
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Taking anti-derivative of Eqn (3.2.3) yields
U + 3°pUDLU + kBU® + K*BDZU = 0 (324

Applying the homogeneous balance method to Eqn (3.2.4) the solution (2.2.4) takes the
form (3.1.5).

Eqn (3.2.4) under the use of solution (3.1.5) and Eqn (2.2.5) creates a polynomial in
(DgG/G) whose coefficients assigning to zero and solving yields the outcomes:

bo{ (b12 — 200)ker/—Tefc :3b1c} _C

PR 325
(bh— 2b0)R2B + 3oy J—pe (325)

kB’
where by, by, k, ¢, pand A are all arbitrary constants.

— — 2
Set2: ap = +byy o a1 = + 2holer/ —kpe b= 2bok’p . (3.26)
kp k2pAx3+\/—kpc k2pAx3+/—kpc

where by, k, ¢,  and A are all unknown parameters.
Utilizing the values available in (3.25) and (3.2.6) in (3.1.5) provide the following
expressions for analytic solutions:

Set 1: ay) =

bo{ (b1A—2bo)k —k/icISblc}_L (e
+(b1A—2b0)k2B+-3by r/—kpc +h \/;/’(Df G/ G)

b+ b (1) ’
—c 2b0k\/IﬂC g
bo\/;—/: + i3/ e (D-f G/G)

200k2p "
bo + kZ/ui; /—kpc (Df G/ G)

Ui(¢) = 327

Up(e) = = : (328)

where & = kx4 cl/ot.

The expressions (3.2.7) and (3.2.8) along with (2.2.7)—(2.2.9) make available the following
closed form traveling wave solutions in terms of hyperbolic function, trigonometric function
and rational function:

3.2.1 Solution 1. When A% —4u > 0,

A/ 224y e A/ 12— a
! 4M>+C2cosh< - 4”)

2C(1+a) 2C(1+a)

G sinh(
bo{(blﬂ—zbo)k —kpe ISblc} =R /724y %
(b1 A—2b0 )2 p+-3b1\/ —kfec =01/ 2
- ~/ 22 a N a
Clcosh< i >+Czsinh< i >

[SIE

2(11a) or(1+a)

Ui = —
\/r 4“_&1) +Cycosh (—}'274” 5Q)

2 (1ta) 2r(1+a)

Clsinh(
V24
bo + Iy 5 £ X
A/ 22— A/ 724
Cicosh (M) +Cysin Iz( it 5a>

[NIES

2I(1+a) 20 (1+a)

329
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bo + by (V M % tanh < sz_ = 5”) %) 159

where & = ko 4 ¢Vt
When 42 — 4y < 0,

. 2 V-2 g
=Csin ( T(+a) ) +Cycos < T(+a)
\ 4u—72

bo { (b13—2bo)ker/=kpe 7301}

(b1 A—2b0 B3~/ P SRV e =3
+(014—200 +3014/ —kpc ) [ 2
Cicos ( ;‘:; j a)fa) +Casin ( 2;1,;;@@!)

_ [ 2 e N
_Clsm( (Tra) )*szs< T (Tra)
—J

by + by | Y N -

2
N/ du—i2 & | A 2 e
Cieos < T (1Ta) ) +Cosin < T (11a)

oI

(3.211)
Setting up ¢; #0, ¢; = 0 provides
bo{ (b14—2bo )/ ~kpe %301y _ b, —_r(m % tan (\/4/4—/12 §n> +i>
+(b11—2b, k>ﬁ+3bl\/j/,; 7 2 T (1+a 2
U2 () (3212)
by — v (\/_ X tan (%;’ﬁ) + 2)
where & = k% + cV/ot
When 22 —4u = 0,
bo{ (011200 Ylen/ e =301} b _(< Grise 4>
O P A e A Gl (3213)
Putting ¢; = 0, ¢y #0 gives out
bo{ (b17=2bo)kr/=kpe F3brc} _ T b _( (14a) _4>
U3(&) = +(b14~2b0 243Dy A/ ~kpe = 2 6214

by — by (r(?a) - %)

where & = k% + Vet
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Cosin 24y R /124y g
18in /e | =S — +Cycosh )
¢ 2bok/ —kpc /A2~y 2
bo k2ﬂ1+3\ /—kpc 7 X 2
22— e . N
160 Cycosh (—me) ) +Czsmh( 70
Uy(&) =+ (32.15)
Cysinh —‘ALW +Cycosh | 22 e
_ 15 20 (1+a) 2605 20 (1+a)
0 200k2p \//12_4,4X .
23/ —kpe 2 e 2
Pt e . N/ P
Cyicosh (W) +Cysin h( FiTa)

Selecting ¢1 #0, ¢ = 0yields

l\)\&

2b5r/—pc [ \/P—4p N/

bo\/,:/, + s ( S Xtan h( ) > )

Uy (&) = + (3.2.16)
2bgk? 224 N 24y g

bo +—k2/ui§ ﬁ—_kﬂc( — Xtanh( o +’; ) g)

where & = k% + cV/t.
When A2 —4u < 0,

m

z/ 2 I
—C15m( ) +Cycos < 214_}:]:0 >
> 2bok/ —kpe 4,4 12

A
04/ 78 2 2
B k2pia3n/—kpc 4u—i2 e
Cycos 1 H,) +Cosin | 5y
S (3217)

A e N VA
_Clsm< pyE) >+C2w>,( I(ira) )
2028 A

0 —

2pA+3+/—kpc 2
N 2 &
G cos( éﬂ) +Cysin ( d ’ﬂ>

20 (1+a, 2r(1+a)

N

oINS

Assigning ¢1 #0, ¢2 = Oreduces

okr/~kpe (/=72 A
bo\/; N ( 2 Xtan( 2T(1ra) ) + é)
Uy (&) =+ , (32.18)

_a2 2 g
__ 2hk%p VA= o [ V4 € 44
12pA3+/—kpc 2 2r(1+a) 2

where £ = kY% + cl/et.



When A% — 4y = 0,

bo. /7 + 2bok~/ —kpc Gl (1+a) ﬂ—i
kp R2pix3 /—kﬂc GI(14+a)+CGé& 2

Uy (&) = + (32.19)
by 4 — 2ukp Gr(i+a)
0 12pra/hpe \ OT+@TGE 2
Using ¢; = 0, ¢2#0, we obtain
by [+ 2 ( (+a) _ i)
28)+3+ /—kBc 2
Uj (&) = + e s , (3.2.20)
o+ 20k F(1+a) 9
2pAx3+/—kpc 2
where & = k% 4 ¢Vt
3.3 The nonlinear space-time fractional KPP equation
The nonlinear space-time fractional KPP equation is
Diu — D¥u + au + bu® + cu® = 0 (33.1)
The fractional complex transformation
u(x, t) = U(&), & = kV/x + w'/¢t (332
reduces Eqn (3.3.1) to
wDiU — DU + aU + bU* + cU* =0 (33.3)

Applying the homogeneous balance method to Eqn (3.3.3) the solution (2.2.4) takes the
form (3.1.5).

Using Eqn (3 1.5) and Eqn (2.2.5), Eqn (3.3.3) forms a polynomial in (D¢G/G) whose
coefficients assigning to zero and solving gives up the following outcomes:

abl{ (—biM) (w0 + 42) — 4ab1k2u}

ay=1,a = )
(—bi\/ b2 — 4ac) (2ab\R2p + bw + bAR?) + 2ac(w + AR?) (334)
b —-b+V'b% — dac
h=——
2a

where by, &, w, Aand y are all unknown parameters.
Inserting the values from (3.3.4) in (3.1.5) provides the following expressions for exact
wave analytic solutions:
ab { (~b+vPP—tac ) (w+?) ~tabi2u } (D56 G)
(—bi\/ b2—dac ) (2ab1 k2 p+bw-+bak? ) +2ac(w+/lk2)

I

U = (3.3.5)

where & = V% 4+ w'/?¢.
Eqn (3.3.5) together with (2.2.7)—-(2.2.9) presents the following exact traveling wave
solutions:
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27,2
Clsinh< 2;(1 4';5 >+L2wsh< v mfﬁ’ )
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When A% — 4y = 0,
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where £ = kY% + w'/?¢.

4. Graphical representations

Some of the furnished solutions in this paper are depicted graphically for their physical
appearance which stands for different shapes of soliton, like, kink-type soliton, singular kink-
type soliton, periodic soliton, singular periodic soliton etc. The solution (3.1.11) represents the
shape of kink-type solitonforA =4, y = by = 3, by = 2.9, a1 = 1.9, a = landy = Owithin
—10<x, t <10 shown in Figure 1. Eqn (3.1.13) stands for the singular periodic soliton for
A=2,a=pu=1by=0b =2,a =5and x = 0 within —10<y, ¢ <10, Eqn (3.1.15) takes
the form of singular kink shape soliton for A =2, uy =1,y =4,51 =3,a; =15, a=05
and y = 0in the range —10 < x, ¢ <10 exposed in Figure 2. Eqn (3.1.17) represents kink-type
soliton for A =4, y = 3, a = by = 1 and ay = 0.5 within —10 <x, £ <10, Eqn (3.1.19) gives

Solutions to
FNLEEs in
mathematical
physics

163

Figure 1.
Kink-type soliton of
solution (3.1.11) for
A=4, u=>5b =3,
bo = 2.97 a = ]..97
a=1landy=0
in-10<x, <10
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Figure 2.

Shape of solution
(3.1.15) for A = 2,
H= 1, by = 4,

b1 = 3, a = 1.5,
a=05andy =0 in
the

range —10<x, 1 <10

Figure 3.
Periodic plot of
solution (3.1.19)
ford = 3,
u=25by=0.5,
ay=1, a=1land
y=0

within —10<x, <10

the shape of periodic soliton for A =3, p =2.5, by = 0.5, ap =1, a =1 and y = 0 in the
interval —10 <, f <10 given away in Figure 3. Eqn (3.1.21) stands for the singular periodic
soliton fora = A = ay = 1, by = 0.5andy = O within the range —10 < x, ¢ <10. The solution
(3.2.10) represents the kink-type soliton for A=4, uy=5b =3, =0y =2, a=c=1and
k = —1 within —10<x, £ <10. Eqn (3.2.12) stands for periodic soliton with 2 =2, y =5,
bh=2,00=3,a=p=1,k=-1 and ¢ =2 in the interval —10<x, <10 shown in
Figure 4. Eqn (3.2.14) presents singular kink soliton for A =2 u =50y =0.2,
b1 =03, a=k=c=1and = —2 within the range —10 < x, <10 revealed in Figure 5.

t 5 lllll,lllllli!l[fllll
10 5 0 -5 -10

X



Eqn (3.2.16) takes the form of kink-type soliton for A=4, u=3,a=k=1,¢c=2,
by=0.5,0p =15 and g =-1 with —=10<x, £<10. Eqn (3.2.18) gives the shape of
periodic soliton for A=by =2, u=5,a=k=c=1, by =3 and f = -2 in the interval
—10<x, ¢ <10. Eqn (3.2.20) represents singular kink-type soliton for A =2, y =k =c =1,
bp=0.2,0 =03, a=0.5 and g = -2 within —10<x, # <10 shown in Figure 6. The
solution (3.3.7) represents the kink-type soliton for A =4,y =3, ¢ = by = 0.5,
bi=15,a=k=w=p=r=1and g = 2 in the range —10 <x, ¢ <10 made known in
Figure 7. Eqn (3.39) stands for periodic soliton for A=2, y=5,bp=02,a=k=w
=p=r=1,a =0.5, by = 0.2and g = 2.5 within the interval =10 < x, ¢ <10given away

O
0.0.

O

9

0
0'0

9 ()
’0:0:0:0:0’
%

%
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Figure 4.

Physical appearance of
solution (3.2.12) for
A=2,u=05,
by=2,b =3,
a=p=1k=-1
andc =2

in-10<x, t<10

Figure 5.
Singular kink-type
soliton of solution
(3.2.14) for
A=2, H=73,
0.2, 5y =0.3,
k=c=1and
B = —2inthe
range —10<x, <10

bo
a
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Figure 6.

Plot of solution (3.2.20)
for 2 =2,
u=k=c=1,

o =02, b =03,

a =05, and

B = —2 within
-10<x, <10

Figure 7.
Physical appearance of
solution (3.3.7) for

w=p=r=1and
q = 2 in the
interval

-10<x, t<10

in Figure 8. Eqn (3.3.11) takes the form of singular kink-type soliton for A =2, a =y = w
=k=r=1q9=2,b) =04, by =0.2and p = 0.51n the range —10 <x, <10 exposed in
Figure 9.

The physical appearance of solutions to FNLEEs bears great importance to depict
different phenomena arisen in various fields of nature in real world. This paper consists of
some fresh and general solutions among which few are graphically brought up.



5. Conclusion

The core aim of this study is to make available further general and fresh closed form analytic
wave solutions to the nonlinear space-time fractional PKP equation, the nonlinear space-time
fractional STO equation and the nonlinear space-time fractional KPP equation through the
suggested rational fractional (DfG/G)-expansion method. The offered method has
successfully presented attractive solutions to the considered equations and shown its high
performance. So far we know the achieved solutions are not available in the literature and
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Figure 8.

Periodic shape of
solution (3.3.9) for
A=2,p=5,
bh=02, a=k=w
=p=r=1,

a = 0.5, b1 =0.2
and g = 2.5 within the
range —10<x, <10

Figure 9.
Plot of solution (3.3.11)
forA=2 a=pu=

w=k=r=1q=2,
bo = 0.4, b1 =0.2and

p = 0.5 within the
interval =10 <x, t<10
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might create a milestone in research area to analyze the physical structure and behavior of the
real life events that correspond to the fractional related models. Therefore, it may be claimed
that the rational fractional (D¢ G/ G)-expansion method in deriving the closed form analytical
solutions is simple, straightforward and productive. This method might be taken into account
for further implementation to investigate any FNLEEs arising in various fields of applied
mathematics and mathematical physics. The obtained solutions in terms of trigonometric
function, hyperbolic function and rational function containing many free parameters are
claimed to be fresh and further general which will take place in the literature.
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