Design and simulation in SAR satellites’ task planning system using genetic algorithm with entropy operator
Aircraft Engineering and Aerospace Technology
ISSN: 0002-2667
Article publication date: 10 August 2021
Issue publication date: 6 September 2021
Abstract
Purpose
This paper aims to innovatively propose to improve the efficiency of satellite observation and avoid the waste of satellite resources, a genetic algorithm with entropy operator (GAE) of synthetic aperture radar (SAR) satellites’ task planning algorithm.
Design/methodology/approach
The GAE abbreviated as GAE introduces the entropy value of each orbit task into the fitness calculation of the genetic algorithm, which makes the orbit with higher entropy value more likely to be selected and participate in the remaining process of the genetic algorithm.
Findings
The simulation result shows that in a condition of the same calculate ability, 85% of the orbital revisit time is unchanged or decreased and 30% is significantly reduced by using the GAE compared with traditional task planning genetic algorithm, which indicates that the GAE can improve the efficiency of satellites’ task planning.
Originality/value
The GAE is an optimization of the traditional genetic algorithm. It combines entropy in thermodynamics with task planning problems. The algorithm considers the whole lifecycle of task planning and gets the desired results. It can greatly improve the efficiency of task planning in observation satellites and shorten the entire task execution time. Then, using the GAE to complete SAR satellites’ task planning is of great significance in reducing satellite operating costs and emergency rescue, which brings certain economic and social benefits.
Keywords
Citation
Liu, W., Li, Z., Chen, L., Zhang, D. and Shao, X. (2021), "Design and simulation in SAR satellites’ task planning system using genetic algorithm with entropy operator", Aircraft Engineering and Aerospace Technology, Vol. 93 No. 7, pp. 1236-1242. https://doi.org/10.1108/AEAT-11-2020-0247
Publisher
:Emerald Publishing Limited
Copyright © 2021, Emerald Publishing Limited