Hot corrosion behavior of selective laser melted TiC/GT D222 nickel-based composite in 75% Na2SO4 and 25% K2SO4 molten salt medium at 900°C
Anti-Corrosion Methods and Materials
ISSN: 0003-5599
Article publication date: 30 July 2024
Issue publication date: 30 October 2024
Abstract
Purpose
This paper aims to investigate the differences in hot corrosion behavior of the GTD222 superalloy and TiC/GTD222 composite in a mixed salt of 75% Na2SO4 and 25% K2SO4 at 900°C.
Design/methodology/approach
The GTD222 superalloy and TiC/GTD222 nickel-based composite were prepared using selective laser melting (SLM). Subsequently, the hot corrosion behavior of the two alloys was systematically investigated in a salt mixture consisting of 75% Na2SO4 and 25% K2SO4 (Wt.%) at 900°C.
Findings
The TiC/GTD222 composite exhibited better hot corrosion resistance compared to the GTD222 superalloy. First, the addition of alloying elements led to the formation of a protective oxide film on the TiC/GTD222 composites 20 h before hot corrosion. Second, TiC/GTD222 composite corrosion surface has a higher Ti content, after 100 h of hot corrosion, the composite corrosion surface Ti content of 10.8% is more than two times the GTD222 alloy 4% Ti. The Ti and Cr oxides are tightly bonded, effectively resisting the erosion of corrosive elements.
Originality/value
The hot corrosion behavior of GTD222 superalloy and TiC/GTD222 composites prepared by SLM in a mixed salt of 75% Na2SO4 and 25% K2SO4 was studied for the first time. This study provides insights into the design of high-temperature alloys resistant to hot corrosion.
Keywords
Acknowledgements
The authors would like to acknowledge the financial support from Shandong Provincial Natural Science Foundation General Program under Grant No. ZR2023ME062.
Citation
Lv, Y., Ouyang, X., Liu, Y., Tian, Y., Wang, R. and Wei, G. (2024), "Hot corrosion behavior of selective laser melted TiC/GT D222 nickel-based composite in 75% Na2SO4 and 25% K2SO4 molten salt medium at 900°C", Anti-Corrosion Methods and Materials, Vol. 71 No. 6, pp. 686-696. https://doi.org/10.1108/ACMM-06-2024-3031
Publisher
:Emerald Publishing Limited
Copyright © 2024, Emerald Publishing Limited