Deep Spatial-Temporal Model for rehabilitation gait: optimal trajectory generation for knee joint of lower-limb exoskeleton
Abstract
Purpose
The purpose of this paper is to model and predict suitable gait trajectories of lower-limb exoskeleton for wearer during rehabilitation walking. Lower-limb exoskeleton is widely used for assisting walk in rehabilitation field. One key problem for exoskeleton control is to model and predict suitable gait trajectories for wearer.
Design/methodology/approach
In this paper, the authors propose a Deep Spatial-Temporal Model (DSTM) for generating knee joint trajectory of lower-limb exoskeleton, which first leverages Long-Short Term Memory framework to learn the inherent spatial-temporal correlations of gait features.
Findings
With DSTM, the pathological knee joint trajectories can be predicted based on subject’s other joints. The energy expenditure is adopted for verifying the effectiveness of new recovery gait pattern by monitoring dynamic heart rate. The experimental results demonstrate that the subjects have less energy expenditure in new recovery gait pattern than in others’ normal gait patterns, which also means the new recovery gait is more suitable for subject.
Originality/value
Long-Short Term Memory framework is first used for modeling rehabilitation gait, and the deep spatial–temporal relationships between joints of gait data can obtained successfully.
Keywords
Acknowledgements
The work described in this paper is partially supported by the National Basic Research Program (Project No. 2015CB351706) and Guangdong Province Commonweal Research and Capability Building Project (2015A010103011). The authors would like to thank all subjects who participate in experiments, and the members of SIAT exoskeleton team for gait acquisition and experiments, and also, thank Ahmed El-Azab for English corrections.
Citation
Liu, D.-X., Wu, X., Du, W., Wang, C., Chen, C. and Xu, T. (2017), "Deep Spatial-Temporal Model for rehabilitation gait: optimal trajectory generation for knee joint of lower-limb exoskeleton", Assembly Automation, Vol. 37 No. 3, pp. 369-378. https://doi.org/10.1108/AA-11-2016-155
Publisher
:Emerald Publishing Limited
Copyright © 2017, Emerald Publishing Limited