Analysis and optimization of assembly precision-cost model based on 3D tolerance expression
ISSN: 0144-5154
Article publication date: 12 March 2018
Issue publication date: 26 October 2018
Abstract
Purpose
This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance is established in this paper.
Design/methodology/approach
The assembly precision is related to the tolerance of parts and the deformation of matching surfaces under load. In this paper, the small displacement torsor (SDT) theory is first utilized to analyze the manufacturing tolerances of parts and the assembly deformation deviation of matching surface. In the meanwhile, the extracting method of SDT parameters is proposed and the assembly precision calculation model based on the 3D tolerance is established. Second, an integrated optimization model based on the machining cost, assembly cost (mapping the deviation domain to the SDT domain) and quality loss cost is built. Finally, the practicability of the precision-cost model is verified by optimizing the horizontal machining center.
Findings
The assembly deviation has a great influence on cost fluctuation. By setting the optimization objective to maximize the assembly precision, the optimal total cost is CNY 72.77, decreasing by 16.83 per cent from the initial value, which meets economical requirements. Meanwhile, the upper bound of each processing tolerance is close to the maximum value of 0.01 mm, indicating that the load deformation can be offset by appropriately increasing the upper bound of the tolerance, but it is necessary to strictly restrict the manufacturing tolerances of lower parts in a reasonable range.
Originality/value
In this paper, a 3D deviation precision-cost model of assembly is established, which can describe the assembly precision more accurately and achieve a lower cost compared with the assembly precision model based on rigid parts.
Keywords
Acknowledgements
This work is supported by the major project of science and technology innovation project in Liaoning province (201301002).
Citation
Sun, W., Mu, X., Sun, Q., Sun, Z. and Wang, X. (2018), "Analysis and optimization of assembly precision-cost model based on 3D tolerance expression", Assembly Automation, Vol. 38 No. 4, pp. 497-510. https://doi.org/10.1108/AA-10-2017-137
Publisher
:Emerald Publishing Limited
Copyright © 2018, Emerald Publishing Limited