Planning models for continuous supply of parts in assembly systems
Abstract
Purpose
The purpose of this paper is to develop analytical planning models to compare just-in-time (JIT) delivery and line storage (LS) alternatives for a continuous supply of materials to assembly lines.
Design/methodology/approach
A mathematical model is developed to size resources and to determine total system costs.
Findings
The choice of assembly lines feeding policy requires a thorough economic comparison of alternatives. However, the existing models are often simplistic, neglecting many critical factors which affect the systems’ performances. As a consequence, industries are unsure about which system is best for their environment. This model allows to compare the cost and suitability of two major continuous-supply alternatives in any specific industrial setting. Results of the model application are case-specific and cannot be generalized.
Research limitations/implications
The model is aimed at single-model assembly lines operating in a deterministic environment. Although relevant quantitative cost drivers are included, some context-related qualitative factors are not yet included. The model assumes that the information about product structure and part requirements is known and that a preliminary design of the assembly system has been carried out.
Practical implications
Production managers are given a quantitative decision tool to properly assess the implementation of continuous material supply policies at an early decision stage, and determine which option is the best, also allowing to explore trade-offs between the alternatives.
Originality/value
With respect to previous simplified literature models, this new approach allows to quantify a number of additional factors which are critical for the successful implementation of cost-effective continuous-supply systems, including error costs. No other direct comparison of LS and JIT is available in the literature.
Keywords
Citation
Caputo, A.C., Pelagagge, P.M. and Salini, P. (2015), "Planning models for continuous supply of parts in assembly systems", Assembly Automation, Vol. 35 No. 1, pp. 35-46. https://doi.org/10.1108/AA-05-2014-040
Publisher
:Emerald Group Publishing Limited
Copyright © 2015, Emerald Group Publishing Limited