Index

Jingrong Tong (Brunel University London, UK)
Landong Zuo (IT Solution Architect, UK)

Tweeting the Environment #Brexit

ISBN: 978-1-78756-502-9, eISBN: 978-1-78756-499-2

Publication date: 8 October 2018

This content is currently only available as a PDF

Citation

Tong, J. and Zuo, L. (2018), "Index", Tweeting the Environment #Brexit, Emerald Publishing Limited, Leeds, pp. 189-198. https://doi.org/10.1108/978-1-78756-499-220181015

Publisher

:

Emerald Publishing Limited

Copyright © 2018 Jingrong Tong and Landong Zuo


INDEX

Administrative rationalism environmentalism
, 36, 61

Advocacy campaigns on Twitter
, 30

Amazon Elastic Compute Cloud
, 152

@Amelia_Womack
, 44, 78, 101, 105, 108, 114

@Another_Europe
, 40, 43, 105

Anti-Brexit accounts
, 43, 91, 105, 113

API. See Application Programming Interface (API)

Application Programming Interface (API)
, 4

Asymmetrical Twitter space, elite domination in

asymmetric structure
, 70–74

attention-driven prominence of elites
, 81–83

decentralisation and anarchy on
, 74–81

Attention-based retweeting networks
, 72, 109

Attention-influenced discursive arguments
, 112–113

@Avaaz
, 51, 53

AWS-EC2
, 152

@BBCHARDtalk
, 79, 103

@BBCNews
, 79, 103, 105, 124

@BBCRealityCheck
, 79, 103–104

Betweenness centrality scores
, 89, 92–94, 104

Big data
, 5, 7–8, 151–153

Big social media data
, 7, 146, 147, 149–150, 160

@BirdLifeEurope
, 78, 120–121

@BorisJohnson
, 43, 48, 78, 100, 108, 116–118

Brexit

and of Brexiteers’ immigration concerns
, 47–48

on British environmental policies
, 61

campaign
, 122

environmental benefits
, 117, 127

environmental impacts and implications
, 47, 54–61

Brexiteers

arguments
, 48

climate deniers and
, 122

immigration concerns
, 47

Remainers and
, 65, 133

Bridging nodes
, 81, 94, 102, 109–110

Campaign-oriented tweeting strategies
, 113

@CarolineLucas
, 41, 44, 50, 56–57, 64, 75, 78, 86, 99–102, 108, 116–117

@ClimateHome
, 56, 75, 79, 97, 122

Climate Home News
, 122–123

@ClimateRetweet
, 72, 75, 79, 92–93

Clustering coefficient values
, 94

Communities
, 133

green camps
, 100–102

interactions and information flow
, 99–100

loosely connected or isolated communities
, 97–99

sparse communities
, 91–97

Computational multi-method analysis
, 154

Computer scientists and social scientists
, 159

Connected clusters
, 98, 103

Conservatism
, 20

Conservative Party
, 21, 32, 113–115, 117–118, 133, 137

Content words
, 39, 53–55, 154

Continuously tweeting
, 49

Core egonets
, 72, 73, 86–87

of green camps
, 103

loosely connected or isolated communities
, 97–99

mixed-methods, data analysis
, 155–157

news media and journalists
, 103–107

and political parties
, 78–81

twitter communication, asymmetric structure of
, 72, 73

Corpus linguistic techniques
, 154

Daily Express
, 53

@Daily_Express
, 51, 79, 103–104, 123

Daily Mail
, 20

Daily Telegraph
, 20, 122

Data driven inductive approach
, 149

@David_Cameron
, 64, 78, 100, 108, 116, 117

Decentralisation and anarchy on Twitter

core egonets and political parties
, 78–80

influential nodes
, 77

lack of persistence
, 77

news media, politicians, political parties and ENGOs
, 78–79

political parties
, 77

retweeting networks
, 77

tweets trends
, 74, 76

users attention
, 81

Deductive and inductive, methodological approaches
, 146–147

Degree
, 72, 89–90

Department for the Environment, Food and Rural Affairs (DEFRA)
, 24

@DesmogUK
, 122

Digital ethnography
, 149

Digital humanity study, mapping
, 88

Discourses

dichotomised claims in pre-referendum
, 37–49

dominant claims
, 49–54

environmental topics, concerns on
, 63–64

popular (retweeted) users
, 50–52

post-referendum
, 54–63

Dobson’s ecological citizenship concept
, 16–17

@DrJillStein
, 78, 101, 108

Ecological citizenship
, 16, 134–135

Ecological footprints
, 16

@EdinburghGreens
, 81

Egonets
, 10, 72, 74, 78, 80, 83, 86, 87, 94–97, 100–109, 156

ElasticSearch
, 7, 39, 152–154, 156

Elite groups
, 77, 81, 83, 101, 107, 135, 139

‘Energy bills/costs’ argument
, 49

@Energydesk
, 57, 61, 75, 77, 78, 97, 108, 120

ENGOs camp
, 119–123

See also Environmental Nongovernment Groups (ENGOs)

Environmental communication on social media
, 2

Environmental data
, 5–6

Environmentalism
, 20, 36, 61, 65, 140

Environmental mobilisation
, 119

Environmental Nongovernment Groups (ENGOs)
, 2, 8, 32

associates and environmental online media
, 86

environmental politics
, 132–133

Environmental online media source
, 72, 94

Environmental politics

awareness and politicisation in UK
, 17–23

in Britain
, 134

global rise of
, 13–17

immersed in social media
, 140–144

old and new players
, 139–140

shared affordances
, 131–133

social constructivist approach
, 132

social context, influence of
, 132–135

technological affordances
, 135–139

Twitter in public participation
, 132

UK’S EU membership
, 23–24

Environmental revolution
, 14

Environmental topics, concerns on
, 63–64, 120, 154

Environmental tweets
, 5, 6, 36, 37, 39, 49, 53, 55, 63, 70, 74, 86, 89, 101, 103, 122–123

Excel
, 152–154

@FoEScot
, 78, 121

Fragility
, 141

Framing and sentiment analysis
, 150

Full egonets
, 72, 94, 101, 103, 107, 156

@GdnPolitics
, 44, 79, 103–104, 123

Gephi
, 7, 152–153, 156

Global civic movement organisation
, 49, 53

Global public environmental awareness

Dobson’s ecological citizenship concept
, 16–17

ecological citizenship
, 16

ENGOs
, 15

environmental revolution
, 14

green consumerism
, 14

greenfreeze refrigerator
, 15

Green Party movement
, 14–15

media campaigns
, 15

political and policy agendas
, 14

trans-boundary pure environmental perspectives
, 17

Western Europe
, 14

Government surveillance disclosures
, 88

Graph density and clustering coefficient
, 89

@Greens4Animals
, 102

Green camps
, 103

bridging nodes
, 102

ENGOs camp
, 102

Green Party
, 101–102

political parties, core egonets of
, 102

Green consumerism
, 14

‘Green decision of a lifetime’
, 41, 46–49, 77, 116

Greenfreeze refrigerator
, 15

@GreenKeithMEP
, 64, 78, 86, 101, 102, 103, 108, 109, 114, 116

@GreenLibDems
, 115–116, 118

Green Party
, 2, 8, 21, 30–32, 47

camp
, 114

environmental politics
, 132–133

and its associates
, 86, 114

movement
, 14–15

theme
, 115

tweets and arguments
, 46

Greenpeace
, 8, 15, 32, 97–99, 120

Green politicians
, 107–110, 115–117

@GreensEP
, 81

the Guardian
, 20, 22, 103–105, 123, 125

@guardian
, 79, 103, 105, 124

@guardianeco
, 79, 105, 123

@GuardianSustBiz
, 79, 105, 123

Hashtags
, 4, 31, 152, 154

Immigration
, 1, 5, 9, 22, 37, 46, 47

In-degree
, 89–90

Indicating words
, 39–40, 53, 55

Influential nodes
, 77–78, 103

Influential social actors
, 153–154

categories
, 125–127

ENGOs camp
, 119–123

loosely connected or isolated communities
, 97–99

news media and journalists
, 123–125

political parties and politicians
, 113–119

social network analysis (SNA)
, 91

Information flow characteristics
, 153

Isolated nodes
, 99, 103

Isolated single nodes
, 97

@iVoteStay
, 72, 75, 93

@jeremycorbyn
, 50, 78, 100, 108, 116–118

Kibana
, 7, 152–154, 156

Laboratory for Energy and the Environment (LFEE)
, 18–19

Labour Party
, 9, 21, 32, 113–115, 117–118, 127, 137

@lboroCRCC
, 103

Liberal Democrats
, 21, 32, 113–114, 115, 133, 137

Liberalism
, 20

Literature, social media research
, 157–158

Loosely connected or isolated communities

connected clusters
, 98

core egonets
, 97–99

influential social actors
, 98

isolated single nodes
, 97

retweeting connections
, 97

@LouiseBoursUKIP
, 49, 78, 113, 116, 117–118

Low density community-clusters
, 109

Low-density networks
, 90, 109

Machine learning techniques
, 150

Major cluster
, 98, 103

Manual coding and computational analysis
, 154

Media ecology
, 25–27

Media-mediated communication
, 30

Mediated political communication
, 69

Mixed-methods, data analysis

computer applications
, 157

computer tools
, 156

core egonets
, 156–157

data conversion
, 156

inductive reasoning
, 157

multi-dimensional features
, 155

in SNA
, 156–157

@MollyMEP
, 81, 86, 92, 97, 102–103, 105, 108, 109, 115

Monthly active users (MAUs)
, 25–26

@natalieben
, 41, 46, 64, 77, 78, 86, 101–102, 108, 109, 116

National-interest-driven environmental discourses
, 143

Networked listeners
, 88

News media and journalists

betweenness centrality scores
, 104

core egonets
, 103–106

environmental organisation
, 105

green camps
, 103

the Guardian
, 103–104

influential social actors
, 123–125

isolated nodes
, 103

major cluster
, 103

Obama campaign in 2008
, 26

Observer
, 22

Office for National Statistics (ONS)
, 19

Offline reality
, 140–144

Offline referendum campaign
, 65

Online activism
, 51, 141

Ontological drift
, 149, 159

Original statements and retweeted tweets
, 70–71

Out-degree
, 89–90, 94

Political commentators and bloggers
, 88

Political mobilisation
, 119, 121

Political parties and non-green politicians
, 107–108

Popularity and activity level
, 70

‘Post-cosmopolitan’ citizenship
, 16

Post-referendum discourse
, 54–63

Pre-referendum discourses, dichotomised claims in

Brexit and of Brexiteers’ immigration concerns
, 47–48

content words
, 39

continuously tweeting
, 49

Elasticsearch
, 39

‘energy bills/costs’ argument
, 49

environmental corporation
, 47

environmental issues and immigration
, 46–47

funding and regulations
, 40

green decision of a lifetime
, 48

Green Party
, 47

Green Party’s tweets and arguments
, 46

indicating words
, 39–40

materialist claims
, 48

popular users
, 40–45

referendum campaign
, 48

Remainers’ arguments
, 46

themes types
, 37–40

transnational environmental concerns
, 40–46

Public discourses on social media
, 112

Public domain, tweets published in
, 155

Public participation and communication
, 143

Rationalism environmentalism
, 61

Referendum campaign
, 48

economy and migration in
, 3

energy bills in
, 48

offline
, 65

Twitter during
, 3–4, 114

Referendum day, dominant claims of remain

Brexit to natural disasters
, 54

content words
, 54

global civic movement organisation
, 53

popular (retweeted) users
, 49–52

themes
, 53

Remainers

arguments
, 46

and Brexiteers
, 65, 133

Retweeting
, 4, 10, 72, 100, 112, 122

connections
, 97

networks
, 77, 86, 105, 109

relationship
, 89, 114

Royal Society for Protection of Birds (RSPB)
, 15, 124

@SadiqKhan
, 52, 78

Scottish National Party (SNP)
, 113, 115, 118, 133, 137

Shared affordances
, 131–133

@SkyNewsBreak
, 79, 103, 105, 123

Social actors, relationships and interactions
, 87–88

Social media

communication
, 1–2, 140–144

and public discourses
, 112

Social media research

inductive approach, advantages and limitations
, 158–160

literature
, 158

methodological challenges
, 145–151

mixed-methods and computational applications
, 155–157

process
, 151–155

Social network analysis (SNA)
, 153–154

campaigns formation
, 88

communities, See Communities

degree
, 89–90

graph density and clustering coefficient
, 89

influential social actors
, 91

news media and journalists
, 103–107

political parties and non-green politicians
, 107–108

‘retweeting’ relationship
, 89

social actors, relationships and interactions
, 87–88

of social media
, 87–90

Spam campaign detecting study
, 88

Sparse communities

betweenness centrality score
, 94

clustering coefficient values
, 94

egonets
, 94–97

environmental online media source
, 94

networks
, 91–94

SPSS
, 7, 152–153

Strong ties
, 90

Swiss “nuclear withdrawal initiative”
, 88

Technical barriers
, 146, 159

Technological affordances

asymmetrical Twitter communication
, 135

attention-based control
, 136

digital divides
, 135, 138

inequalities in attention
, 137

legitimacy of expression
, 136–138

overall national-interest-driven discourse
, 138

retweeting networked communities
, 137

symbolic capital
, 136–137

users attention
, 135

@TelePolitics
, 79, 103, 105, 123–124

@TheGreenParty
, 41, 46–47, 75, 77–79, 81, 92, 100, 114, 116

Total taxes and social contributions (TTSC)
, 19

Traditional news media
, 25, 27, 62, 103, 111–112

Traditional political communication
, 69, 140

Traditional social science research
, 146–148

Transnational ecological citizenship
, 134–135

Tweets trends
, 74, 76

Twitter

advocacy campaigns on
, 30

Application Programming Interface (API)
, 4

Australian flood crises in 2010 and 2011
, 88

for certain purposes
, 88

communication studies
, 27–29

competing site
, 113

decentralisation and anarchy on
, 74–81

environmental communication on
, 29–32

Gezi Park protests in Turkey
, 88

hashtags
, 4

internet- or mobile-based
, 26

media ecology
, 27

old and new players
, 139–140

Pakistan floods
, 88

during referendum campaign
, 3–4

technical features
, 133

topic networks
, 88

Twitter4j
, 152

Twitter communication, asymmetric structure of

active and popular users
, 74–75

active user
, 72

attention-based retweeting networks
, 72

core egonets
, 72, 73

degree
, 72

full egonets
, 72

original statements and retweeted tweets
, 70–71

popularity and activity level
, 70

users types
, 73

UK green taxes
, 20

UK Independence Party (UKIP)
, 113–114, 118

Users

active and popular
, 74–75, 83

attention
, 81

frequently mentioned
, 81–83

types
, 73

@vote_leave
, 43, 45, 48

@Vote-LeaveMedia
, 43, 48

Weak ties
, 90, 108

Web 2.0
, 26

@WhyToVoteGreen
, 44, 51, 75, 77, 92–93, 105, 108

Wildlife Trusts
, 121–122

@WildlifeTrusts
, 40, 41, 50, 56, 70, 74, 75, 77, 78, 92, 93, 120

@wwwfoecouk
, 75, 77, 78, 102, 103, 108, 109, 121