Laser pulse heating of steel surfaces including impinging gas effect and variable properties
International Journal of Numerical Methods for Heat & Fluid Flow
ISSN: 0961-5539
Article publication date: 1 March 2002
Abstract
The gas assisted Iaser heating of engineering surfaces finds wide application in industry. Numerical simulation of the heating process may considerably reduce the cost spent on experimentation. In the present study, 2‐dimensional axisymmetric flow and energy equations are solved numerically using a control volume approach for the case of a gas assisted laser heating of steel surfaces. Various turbulence models including standard k‐ε, k‐ε YAP, low Reynolds number k‐ε and RSTM models are tested. The low Reynolds number k‐ε model is selected to account for the turbulence. Variable properties of both solid and gas are taken into account during the simulation. Air is considered as an assisting gas impinging the workpiece surface coaxially with the laser beam. In order to validate the presently considered methodology, the study is extended to include comparison of present predictions with analytical solution for the case available in the literature. It is found that the assisting gas jet has some influence on the temperature profiles. This effect is minimum at the irradiated spot center and it amplifies considerably in the gas side. In addition, account for the variable properties results in lower surface temperatures as compared to the constant properties case.
Keywords
Citation
Shuja, S.Z., Yilbas, B.S. and Budair, M.O. (2002), "Laser pulse heating of steel surfaces including impinging gas effect and variable properties", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 12 No. 2, pp. 195-219. https://doi.org/10.1108/09615530210418339
Publisher
:MCB UP Ltd
Copyright © 2002, MCB UP Limited