To read this content please select one of the options below:

A comparative study of hybrid machine learning techniques for customer lifetime value prediction

Chih‐Fong Tsai (Department of Information Management, National Central University, Jhongli City, Taiwan)
Ya‐Han Hu (Department of Information Management, National Chung Cheng University, Min‐Hsiung, Taiwan)
Chia‐Sheng Hung (Department of Nonprofit Organization Management, Nanhua University, Dalin Township, Taiwan)
Yu‐Feng Hsu (Department of Information Management, National Sun Yat‐Sen University, Kaohsiung, Taiwan)

Kybernetes

ISSN: 0368-492X

Article publication date: 22 March 2013

2514

Abstract

Purpose

Customer lifetime value (CLV) has received increasing attention in database marketing. Enterprises can retain valuable customers by the correct prediction of valuable customers. In the literature, many data mining and machine learning techniques have been applied to develop CLV models. Specifically, hybrid techniques have shown their superiorities over single techniques. However, it is unknown which hybrid model can perform the best in customer value prediction. Therefore, the purpose of this paper is to compares two types of commonly‐used hybrid models by classification+classification and clustering+classification hybrid approaches, respectively, in terms of customer value prediction.

Design/methodology/approach

To construct a hybrid model, multiple techniques are usually combined in a two‐stage manner, in which the first stage is based on either clustering or classification techniques, which can be used to pre‐process the data. Then, the output of the first stage (i.e. the processed data) is used to construct the second stage classifier as the prediction model. Specifically, decision trees, logistic regression, and neural networks are used as the classification techniques and k‐means and self‐organizing maps for the clustering techniques to construct six different hybrid models.

Findings

The experimental results over a real case dataset show that the classification+classification hybrid approach performs the best. In particular, combining two‐stage of decision trees provides the highest rate of accuracy (99.73 percent) and lowest rate of Type I/II errors (0.22 percent/0.43 percent).

Originality/value

The contribution of this paper is to demonstrate that hybrid machine learning techniques perform better than single ones. In addition, this paper allows us to find out which hybrid technique performs best in terms of CLV prediction.

Keywords

Citation

Tsai, C., Hu, Y., Hung, C. and Hsu, Y. (2013), "A comparative study of hybrid machine learning techniques for customer lifetime value prediction", Kybernetes, Vol. 42 No. 3, pp. 357-370. https://doi.org/10.1108/03684921311323626

Publisher

:

Emerald Group Publishing Limited

Copyright © 2013, Emerald Group Publishing Limited

Related articles