To read this content please select one of the options below:

(excl. tax) 30 days to view and download

Identification of biological signal sources for circadian and cardiac cycle rhythms using BP neural networks

Y. Cisse, Y. Kinouch, H. Nagashino, M. Akutagawa

Kybernetes

ISSN: 0368-492X

Article publication date: 1 December 2000

301

Abstract

Biological oscillatory activity in neural networks has been intensively studied over the past years. Neuronal oscillations are the basis of many different behavioral patterns and sensory mechanism. Understanding the dynamic properties of these mechanisms is useful for analyses of biological functions and medical diagnoses. The dynamic characteristics of wake‐sleep circadian rhythms and ECG’s cardiac cycle data measured for normal subjects are identified here, using MA‐BP neural network model. It was found that dynamics of regular components can be captured by the model. The captured dynamics are kept in a steady state for some periods. The order of the MA neural network was suppressively controlled by the first 2∼3 orders. Hence it may be useful for medical diagnoses of circadian rhythms and heart related diseases.

Keywords

Citation

Cisse, Y., Kinouch, Y., Nagashino, H. and Akutagawa, M. (2000), "Identification of biological signal sources for circadian and cardiac cycle rhythms using BP neural networks", Kybernetes, Vol. 29 No. 9/10, pp. 1112-1125. https://doi.org/10.1108/03684920010342189

Publisher

:

MCB UP Ltd

Copyright © 2000, MCB UP Limited

Related articles