To read this content please select one of the options below:

(excl. tax) 30 days to view and download

TEAM problem 22 approached by a hybrid artificial life method

Salvatore Coco, Antonino Laudani, Francesco Riganti Fulginei, Alessandro Salvini
161

Abstract

Purpose

The purpose of this paper is to apply a hybrid algorithm based on the combination of two heuristics inspired by artificial life to the solution of optimization problems.

Design/methodology/approach

The flock‐of‐starlings optimization (FSO) and the bacterial chemotaxis algorithm (BCA) were adapted to implement a hybrid and parallel algorithm: the FSO has been powerfully employed for exploring the whole space of solutions, whereas the BCA has been used to refine the FSO‐found solutions, thanks to its better performances in local search.

Findings

A good solution of the 8‐th parameters version of the TEAM problem 22 is obtained by using a maximum 200 FSO steps combined with 20 BCA steps. Tests on an analytical function are presented in order to compare FSO, PSO and FSO+BCA algorithms.

Practical implications

The development of an efficient method for the solution of optimization problems, exploiting the different characteristic of the two heuristic approaches.

Originality/value

The paper shows the combination and the interaction of stochastic methods having different exploration properties, which allows new algorithms able to produce effective solutions of multimodal optimization problems, with an acceptable computational cost, to be defined.

Keywords

Citation

Coco, S., Laudani, A., Riganti Fulginei, F. and Salvini, A. (2012), "TEAM problem 22 approached by a hybrid artificial life method", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 31 No. 3, pp. 816-826. https://doi.org/10.1108/03321641211209726

Publisher

:

Emerald Group Publishing Limited

Copyright © 2012, Emerald Group Publishing Limited

Related articles