To read this content please select one of the options below:

An implementation of mixed enhanced finite elements with strains assumed in Cartesian and natural element coordinates using sparse B (overline)‐matrices

R. Piltner (Department of Engineering Mechanics, University of Nebraska‐Lincoln, Lincoln, Nebraska, USA)

Engineering Computations

ISSN: 0264-4401

Article publication date: 1 December 2000

448

Abstract

The use of enhanced strains leads to an improved performance of low order finite elements. A modified Hu‐Washizu variational formulation with orthogonal stress and strain functions is considered. The use of orthogonal functions leads to a formulation with B (overline) ‐strain matrices which avoids numerical inversion of matrices. Depending on the choice of the stress and strain functions in Cartesian or natural element coordinates one can recover, for example, the hybrid stress element P‐S of Pian‐Sumihara or the Trefftz‐type element QE2 of Piltner and Taylor. With the mixed formulation discussed in this paper a simple extension of the high precision elements P‐S and QE2 to general non‐linear problems is possible, since the final computer implementation of the mixed element is very similar to the implementation of a displacement element. Instead of sparse B‐matrices, sparse B (overline) ‐matrices are used and the typical matrix inversions of hybrid and mixed methods can be avoided. The two most efficient four‐node B (overline) ‐elements for plane strain and plane stress in this study are denoted B (overline)(x, y)‐QE4 and B (overline)(ξ, η)‐QE4.

Keywords

Citation

Piltner, R. (2000), "An implementation of mixed enhanced finite elements with strains assumed in Cartesian and natural element coordinates using sparse B (overline)‐matrices", Engineering Computations, Vol. 17 No. 8, pp. 933-949. https://doi.org/10.1108/02644400010379776

Publisher

:

MCB UP Ltd

Copyright © 2000, MCB UP Limited

Related articles