Crystalline object evaluation by image processing
Abstract
Purpose
The purpose of this paper is to propose a state discrimination for crystallization samples (droplets), the purpose of which is to discriminate between diffractable extracts (crystal) and other objects.
Design/methodology/approach
The line feature from the image of the protein droplet was extracted and the state discriminated using a classifier based on line features. A support vector machine is used as the classifier.
Findings
In order to verify the performance of the proposed method, the growth state was discriminated experimentally using the images taken by TERA, an automated crystallization system. The correction ratio was determined to exceed 80 percent.
Originality/value
Contribution to automated evaluation process of the growth state of protein crystallization samples.
Keywords
Citation
Kawabata, K., Takahashi, M., Saitoh, K., Sugahara, M., Asama, H., Mishima, T. and Miyano, M. (2008), "Crystalline object evaluation by image processing", Sensor Review, Vol. 28 No. 2, pp. 143-149. https://doi.org/10.1108/02602280810856714
Publisher
:Emerald Group Publishing Limited
Copyright © 2008, Emerald Group Publishing Limited