Measurement systems for large aerospace components
Abstract
This paper results from research carried out to survey the various large commercial aerospace engineering component measurement systems. The commercial aircraft manufacturing industry is special due to the size of the components involved. Accuracy constraints remain very close, despite the size, and therefore accurate methods of measurement are necessary to control the quality of the final product. A survey of various current methods of measurement for such components is presented. These methods are based around three main principles: theodolites, photogrammetry, and laser technology. Each method has its own advantages and disadvantages in terms of accuracy, repeatability, range and cost. It is also often necessary to consider what each technique provides in terms of data storage and analysis. Most techniques use computer‐based systems to store results and perform various calculations. These systems also have their own requirements in terms of the environment in which they are used. It is important to consider whether a particular system can be installed in an area suitable to measure the required component, as well as ensuring that the stability requirements are met. In this paper the principles and characteristics of conventional optical tooling, electronic triangulation, electronic trilateration, photogrammetry, laser trackers, and laser scanners are reviewed.
Keywords
Citation
Saadat, M. and Cretin, L. (2002), "Measurement systems for large aerospace components", Sensor Review, Vol. 22 No. 3, pp. 199-206. https://doi.org/10.1108/02602280210433025
Publisher
:MCB UP Ltd
Copyright © 2002, MCB UP Limited