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Abstract
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1. Introduction and preliminary results

In recent years many researchers generalized different inequalities using different identities
involving green functions, for example in [24] Nasir et al. generalized the Popoviciu inequality
using Mongomery identity along with the new green function. Also in [25] Niaz et al. used
Fink’s identity along with new Abel-Gontscharoff type Green functions for ‘two point right
focal’ to generalize the refinement of Jensen inequality.

The most commonly used words, the largest cities of countries, income of billionaire can be
described in terms of Zipf's law. The f-divergence means the distance between two
probability distributions by making an average value, which is weighted by a specified
function. As f-divergence, there are other probability distributions like Csiszar f-divergence
[11,12], some special case of which is Kullback—Leibler-divergence used to find the
appropriate distance between the probability distributions (see [20,21]). The notion of
distance is stronger than divergence because it gives the properties of symmetry and triangle
inequalities. Probability theory has application in many fields and the divergence between
probability distribution has many applications in these fields.

Many natural phenomena like distribution of wealth and income in a society, distribution of
face book likes, distribution of football goals follow power law distribution (Zipf's Law). Like
above phenomena, distribution of city sizes also follows Power Law distribution. Auerbach [3]
first time gave the idea that the distribution of city size can be well approximated with the help
of Pareto distribution (Power Law distribution). This idea was well refined by many researchers
but Zipf [32] worked significantly in this field. The distribution of city sizes is investigated by
many scholars of the urban economics, like Rosen and Resnick [29], Black and Henderson [4],
Ioannides and Overman [19], Soo[30], Anderson and Ge[2] and Bosker et al. [5]. Zipf's law states
that: “The rank of cities with a certain number of inhabitants varies proportional to the city
sizes with some negative exponent, say that is close to unit”. In other words, Zipf's Law states
that the product of city sizes and their ranks appear roughly constant. This indicates that the
population of the second largest city is one half of the population of the largest city and the third
largest city equal to the one third of the population of the largest city and the population of #th
city is % of the largest city population. This rule is called rank, size rule and also named as Zipf’s
Law. Hence Zip’s Law not only shows that the city size distribution follows the Pareto
distribution, but also shows that the estimated value of the shape parameter is equal to unity.

In [18] L. Horvath et al. introduced some new functionals based on the f-divergence
functionals and obtained some estimates for the new functionals. They obtained f-divergence
and Rényi divergence by applying a cyclic refinement of Jensen’s inequality. They also
construct some new inequalities for Rényi and Shannon entropies and used Zipf-Mandelbrot
law to illustrate the results.

The inequalities involving higher order convexity are used by many physicists in higher
dimension problems since the founding of higher order convexity by T. Popoviciu (see [27,
p. 15)). It is quite interesting fact that there are some results that are true for convex functions
but when we discuss them in higher order convexity they do not remain valid.

In [27, p. 16], the following criteria are given to check the m-convexity of the function.

If f™) exists, then f is m-convex if and only if £ > 0.

In recent years many researchers have generalized the inequalities for m-convex
functions; like S. I. Butt et al. generalized the Popoviciu inequality for m-convex function
using Taylor’s formula, Lidstone polynomial, Montgomery identity, Fink’s identity,
Abel-Gontscharoff interpolation and Hermite interpolating polynomial (see [6-10]).

Since many years Jensen’s inequality has of great interest. The researchers have given the
refinement of Jensen’s inequality by defining some new functions (see [16,17]). Like many
researchers L. Horvath and J. Pecari¢ in [14,17], see also [15, p. 26], gave a refinement of
Jensen’s inequality for convex function. They defined some essential notions to prove the
refinement given as follows:



Let X be a set, and:
P(X):= Power set of X,
|X|:= Number of elements of X,
N:= Set of natural numbers with 0.
Consider g > 1 and » > 2 be fixed integers. Define the functions

F.: {1,...,(1}’—>{1,...,q}r_1 1<s<r,
F:{1,....q} =P({1,....q} "),

and
T,:P({1,...,q}) = P({L.....a}""),
by
Fr,s(il,-..,ir):: (i17i2,---ais—lais+17'--7i7‘) 1SSS?’,
F,,(l'l,...,l-,,) = U{Fns(ila-”aif)}:
s=1
and

Next let the function
a;: {1,....q) >N 1<i<q
defined by

a; (11, .. .,%,)1is the number of occurrences of ¢ in the sequence (1,. .. ,7).

ForeachIeP ({1,...,q}") let
ai= Y aylin,....i) 1<i<q.

(iy.dr) €l
(Hp) Let n,m be fixed positive integers such that #>1, m >2 and let [, be a subset of
{1,...,n}" such that
ap,;>21 1 <i<n.

Introduce the sets ; c {1, .. ., n}l (m—1>[>1) inductively by
Iyi= To() mzlz2.
Obviously the sets I; = {1,...,n}, by (/1) and this insures that ay, ; = 1(1 <¢ <#n). From

(Hi)wehaveay;>1(m—-1>1>1,1<i<n).
For m>[>2 and for any (ji,...,j;-1) €11, let

TG, iin) = {(Gry i) k) X {1, TG, i) = Gy i) }-
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AJMS With the help of these sets they define the functions ; ; : [; - N(m >1>1) inductively by

26,1/2 Myon(Bs - ostm) i =1 (1o yim) € Ly
n[m,l—l(/lv s 7jl—1) = Z 7’][}”‘[(1.1, A ,i[).
((@1,-31) RVEX (1 - d1-1)
18 They define some special expressions for 1 </ <, as follows
m—1)! . )
Ja/m,l = ’/Wm,l(lmaxh oy Xy D1y D f) = ((l _ 1))| Z ’]1;;,.1(117 s 7Zl)

(iy,2))€],

b
! pl Zj:la[mi xl‘]
—ay,; D
= jzlalmfj

and prove the following theorem.

Theorem 1.1. Assume (Hi), and let f: I - R be a convex function where I CR is an

interval If x1, ..., x, €l and p1, . . ., py are positive real numbers such that >_'_ps = 1, then
f < Zpsx5> S 1%;;117” S vo/m,m—l S et S bQ‘/WL.Z S e‘Q‘/m.l - Zp:f(xa) (1)
s=1 s=1

We define the following functionals by taking the differences of refinement of Jensen’s
inequality given in (1).

@1(}[):'9/7%.;‘_1[(2175-%5), r=1,...,m, @)
s=1
Qz(f) :LQ/m,r *&/m,k, 1<r<k<m. 3
Under the assumptions of Theorem 1.1, we have
e;(f)=0, i=1,2 @)

Inequalities (4) are reversed if f is concave on I.
In [26], the green function G : [y, @] X [a1, az] — R is defined as

(M *az)(ﬂ — (11)

a a ) ]<U<M§
2 — 41
Gu,v) = ©)
(Z/*Clz)(%*(ll) u<v<a
s — 07 ==

The function G is convex with respect to v and due to symmetry also convex with respect
to . One can also note that G is continuous function.

In [31] it is given that any function f : [, @] = R, such that f € C?([ay, a3]) can be
written as "

flu) =

Ay — U
2—f(m) +
ay — 1

2l + / " Gl o) (0)dv. ©

Oy — .



2. Inequalities for Csiszar divergence
In [11,12] Csiszar introduced the following notion.

Definition 1. Let f: R" >R" be a convex function, let r= (r,...,7,) and
= (q1,...,q,) be positive probability distributions. Then f-divergence functional is

defmed by
n ”
=S arf(2). 7
; af (q) )

And he stated that by defining

. 0 a . a
F0)i= s 07(5)i= 05 0£(5)i= mer(§). a0 @
we can also use the nonnegative probability distributions as well.
In [18], L. Horvath, et al. gave the following functional based on the previous definition.

Definition 2. Let /CR be an interval and let f: />R be a function, let
r=(r,...,7,) ER"and q = (¢1,- . .,qx) € (0, 0)" such that

7
Zel, s=1,...,n.
qs

Then they define the sum ?f(r, q) as

)= qu (3) ©)

We apply Theorem 1.1 to ff(r7 q)

Theorem 2.1. Assume (Hp), let ICR be an interval and let v = (r1,...,7,) and
qa=(q1,---,qu) arein (0, 00)" such that

7
—€l, s=1,...,n.

S

() If f : I > Ris a convex function, then

1] 1
Z qs ( ) = Af[nl ZAa[n]Z ’ ZAE’VL],M—] ZAgz]m

M) Y "
Zf(ZZ-llqs ;‘h-

where

>
j=lay,, 4

Sra
j=1 M i

_ L
=T T '71,,,,1(i17~~-7iz)<2%>f

" (i€l 1 Hon

If f is a concave function, then inequality signs in (10) are reversed.
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AJMS (@) If f - I - Ris a function such that x — xf (x)(x €1) is convex, then

26,1/2 .
( Z n) ( Z ) ALZl]m —A[Z] <Am 2 SAnzi]l
B : l s

. 12)
= 7 f - /[\'d r, q
20 2, () =Tt @
where
L [
m—1)! Log \ [ 2, bR
Aﬁ]z=( Z My, (015 - (Z J) X =
o _ | m ) t A q;
O = i) | i o 2t
Proof. (i) Consider p; = ﬁ and x, = fin Theorem 1.1, we have
s=177 :
g (m —1)! . .
7 e < ’7[,,111(117-”711)
(Sstai)s <iw,5,
< 13
a4 " 7
! ﬁ Zjl‘flza;i:l% o " ¢ 7
el B s ()
j=1 aI’”'iJ Zd —1 Zzzlqs UR
! i—1%i
Zj:l (llmjl
And taking the sum Y ¢; we have (10).
(1) Using f := idf (where “/d” is the identity function) in Theorem 1.1, we have
n n
(m —1)! . .
Zpsx\f(zpsx<> <--- =L (l — 1)' . Z ’11,»1(117 T 711)
s=1 s=1 (@150 €l
Vi bi ! bi
x (i plz ) Zj:l Wi’z xi] Zj*l (’In:t i (14)
. Vi bi; ! bi
Jj=1 al’”’lf Z] 1”’»1].1'] Z] -

Now on using p, =

gs
Z.\:lq\



~ 4 TN~ a7 (m —1)!
< 7 —|<--- =<
Z1: Zs:qu qbf ( Z Zs:lqs q$> (Z - 1)' .

5= s=1 (11,40 EL
"
ai 7 7
; ] Zl_ 2o 7 Zl' 2o 7
X ZZJ* =l a4 f =1, g (15)
) 5 4
e ; —

Z . 145 qﬁ(ﬁ)

On taking sum >_"_, ¢, on both sides, we get (12). O]
3. Inequalities for Shannon Entropy

Definition 3 (See [I8]). The Shannon entropy of positive probability distribution
r = (r1,...,7,)is defined by

S:== rlog(r.). (16)

s=1

Corollary 3.1. Assume (H;).
@A) Ifq=(q1,---,q,) €(0,00)", and the base of log is greater than 1, then

S<AE m S"4mm 1 <AmZ S"4ml 1Og< ) qu’ (17)
: 1 S s=1

1 . l X
A=y mm‘laa,...,@)(Zq—?)log<zq—?). 19

(i1 d))EL j=1 a,, o =1 M

If the base of log is between 0 and 1, then inequality signs in (17) are reversed.
@) Ifqa = (q1, - - -, qn) is a positive probability distribution and the base of log is greater than 1,
then we have the estimates for the Shannon entropy of q

S<Al <Al <Al <Al = log (n), (19)

mml

where
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Proof. (¢) Using f:= logandr = (1,...,1) in Theorem 2.1 (z), we get (17).
(#) It is the special case of (7). O

Definition 4 (See [18))
The Kullback—Leibler divergence between the positive probability distribution
r=(n,...,7,)andq = (q1,...,qy) is defined by

n ”
= rilog( = ). 20
; g ((]z) @)

Corollary 3.2. Assume (H).
(@) Let v = (r1,...,7,) €(0,00)" and q:=(q1,...,q,) €(0,0)". If the base of log is
greater than 1, then

Srie( 357
- $rim(2) -0t )

mm — *mm— 1 - m,

><A5] < AP
1)

where

[ 7 [ 7i
Lo\ [Sh) (s
B (Wl*l)! . . qi j=1 Fm i =1 X i
A, = (-1 § 1, s -5 d) E — ; q,-Jj X log 0
J

! i i
(11,0 €L =1 @y, A

Zf:l Ly i =1y,

If the base of log is between 0 and 1, then inequality in (21) is reversed.
(@) If r and q are positive probability distributions, and the base of lis greater than 1, then we
have

D(r, q) = Am1 >A >A8 > A8 >0, 22)

mm— 1— m,m

where

] 7 / 7
/ Z; i Z; i
6 (m - 1)' . . qi; =1 U i j=1 Fm i
Af[n].l = — 1)' Z ’71,;1,1(117 s 711) Z - i 111‘]-] X IOg / qivj
J

/ — Q]

'

If the base of log is between 0 and 1, then inequality signs in (22) are reversed.
Proof. (¢) On taking f := log in Theorem 2.1 (i), we get (21).

(if) Since r and q are positive probability distributions therefore Y 7, = >" 1g; =1, s0
the smallest term in (21) is given as

Zrlog(ZZl v b) (23

Hence for positive probability distribution r and q the (21) will become (22). [



4. Inequalities for Rényi Divergence and Entropy Estimation of
The Rényi divergence and entropy come from [28]. different

Definition 5. Let r = (r,...,7,) and q:=(q1,...,¢,) be positive probability entropies
distributions, and let A >0, A # 1.

(@) The Rényi divergence of order A is defined by

- 110g<2ql (7)k). (24) 23

(b) The Rényi entropy of order A of r is defined by

H,(r) := ﬁlog(ir?). (25)
i1

The Rényi divergence and the Rényi entropy can also be extended to non-negative
probability distributions. If A — 1 in (24), we have the Kullback—Leibler divergence, and if
A — 1in (25), then we have the Shannon entropy. In the next two results, inequalities can be
found for the Rényi divergence.

Dy(r, q) ==

Theorem 4.1. Assume (Hy), let v = (n,...,7,) and q = (q1,-..,qs) ave probability
distvibutions.
(2) If 0 <M<y such that \, u # 1, and the base of log is greater than 1, then

D;\(I', q) SAf[Zq]m SAZ]WL—I <Am2 <A1[Z].1 = Dﬂ (I', q)’ (26)
where
1
J 7 7
= ey, [Tl
Ay = log My, ll)( - > X
o _ _ | m ? . A 7
1 (l 1) (01,-t)€ED J=1 Ay Zj:l a17;l

The reverse inequalities hold in (26) if the base of log is between 0 and 1.
(%) If 1 < p and the base of log is greater than 1, then

Dl(r’ (l) anOg( ) m m <A;[i m1S SASB SAE;]I = Dﬂ(rr q)v

27)

(=D og|
A[B] = < 1 lo; —(Wl—l)! Z (l l) i 7i; % e =1 g 5
S e ) UMICERRRL a) P ;

L
(0,a)€l ijl Ty

here the base of expis the same as the base of log, and the reverse inequalities hold if the base of
log is between 0 and 1.
(1) If 0K\ < 1, and the base of log is greater than 1, then



AJMS D;L(I‘, q) <A7[Z m SAngi]m 1 <Am2 <Aml - D1 (I‘, q)’ (28)

where -1
7. 7.
Yiaas | 2
1 (m—1) ZI 7 =L \ 4
A= =l > Myl ( ZJ ) o

ml T _ _ | 7 i
24 A-1 (-1 (i1,-.-sir) €Ly =1 Fniy J=1
(29)
Proof. By applying Theorem 1.1 with I = (0, ), f : (0,00) = R, f(t) = ti=1
A1
bs =71y, Xoi= (E) , S= ]-7 ) 11,
ds
we have
n 7. A 5 n 7. A H (m—l)' ) ] ! 7
J(= = (= < L<E d
(;q (qs) ) <21:7 (q) ) 1) (z‘l,%elzmml(ll i) ; o
-1 Lj
o ! (30
G
ZJ Lay,, <%> n r a1 %
[ )
Z] lalmll s=1 gs

ifeither 0<A <1< ﬂ or 1 < A<y, and the reverse inequality in (30) holds if 0 <A< f < 1.
By raising to power ., we have from all

1

-1

=
T
=

A1 5T
[ i 7
Lo Z_:lif A
n AN\ (m —1)! ) . i 7 =1 ay,, (q,/>
(Zq(q—>> <2 D i) Za,,» XN
i

1)

Since log is increasing if the base of logis greater than 1, it now follows (26). If the base of log
is between 0 and 1, then log is decreasing and therefore inequality in (26) is reversed. If A = 1
and g = 1, we have (i) and (i) respectively by taking limit, when A goes to 1. [

Theorem 4.2. Assume (Hy), let v = (r1,...,7,) and q = (q1,...,q,) are probability
distributions. If either 0 <\ < 1 and the base of logis greater than 1, or 1 < Nhand the base of
log is between O and 1, then



1 n N\ )
Z:‘lzl qs (%) s=1 . |

<A[10] 1SAlo <Dy(r,q) < A[”}n

mm —

_Al() <A10

ml = mZ—

SA[H] < <A1¢22<A¢[11111 _D (I‘ q)

where
! (m —1)! o
Agz(.);]n = n (l — 1), . Z 7’]1”171(21, .. Zl)
(7& — 1)2?:1% (i) (i1,.--4) €L
A1
7 7
l M Siag |
X Z VIJ 1()g ay, i qu
j=1 ay, i QZJ Zl 7
/=1 aImAz]
and

7

A1
7
Z]l':1 A )
1 (m-1)! ) ) L a ar,i; \ 4
pg = i\ 1Yy
Am.m - 7\71 (Z*l)' Z ’71”,,1(217“-”)(2 a XIOg | Vi]-
(i1,-.47) €L j=1 m

j=1 .
L i

The inequalities in (32) are reversed if either 0 <\ < 1 and the base of log s between 0 and 1,
or 1 < Mand the base of lis greater than 1.

Proof. We prove only the case when 0 <\ < 1and the base of log is greater than 1 and the
other cases can be proved similarly. Since L%l < 0and the function logis concave then choose

I =(0,00),f :=log, ps =1, x5 := (&)A’1 in Theorem 1.1, we have
n P A 1 n , A1
lo = = lo 7| =
1 g(;q’(%) ) r—1 g(; (qs) )

-1
z—(—)
1 (m—1) (& AN
-S—( ) Z ;717}1‘1(11,...,2;)<Z J.)log — = 5 (33)

(el

D}\(I‘, q) -

IA

1 n 7, A1 n 7,
< <53 Z rslog( (q) > ; rlog (qs) Di(r, q)

and this gives the upper bound for D, (r, q).
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AJMS Since the base of log is greater than 1, the function x — xf(x) (x > 0) is convex therefore
26,1/2 155 < 0and Theorem 1.1 gives

xi 110g<iqs(%y>
2 ) r—1 (Zﬁiqs < >k) (Zl * <;_>A> o ( Zl " <2—>x>

D}\ (I', q) =

a1 A1
Zl Yy (7 Zl Yy (7
i1\ 7 i1\ 7
aIm.zj 6]1]- 1 aIm,zj sz

l " ! 7’1]
2 a,ﬁjjj i E
1 m—1)! . . ”
= (1_1) Z NGO

g A
A-1 (Z’::l ds (2_:> ( ) (11,41 ELy

a1
N
a1 D el b
1’2‘] <7’Z'j >1 almtzj qu

=1 alm,zj QZ] l 7i]-
Ly, ;
. . 1 n 7. }\.—11 7. A1 1
2 7s\ — og| — —_——
- “a-1 —1 \Ys g qs n e il
Zszl 7s as
1 n 7. A 7,
B ()()
- (ﬁ) ~"\q. g,
s=11s\ ¢,

which give the lower bound of D, (r, q). (]
By using Theorems 4.1, 4.2 and Definition 5, some inequalities of Rényi entropy are

obtained. Let 1 = (1 . l) be a discrete probability distribution.

n’ n

Corollary 4.3. Assume (Hi), let v = (r1,...,7,) and q = (q1,...,q,) are positive
probability distributions.

() IFOLSA<p, M u#1, and the base of logis greater than 1, then

Hy(x) = log(n) — D, (r, %) 2A 2 A2 A2 A = Hy(r),  (39)



where X
Lo =
1 (m—1)! Loy, 2,
Al log ny (G, 0) X ( ! ) X ;
f 1w (=1t (hz; ;%@ S T
The reverse inequalities hold in (35) if the base of log is between 0 and 1.
(@) If 1 < pand base of log is greater than 1, then
S == pilogp) 2 Al > AN > 2 AN > A = H(r) ()
s=1

where

1 (m—1)! . N
L _ j
A, = log(n) + T _Iulog = Z N, (s -5 ir) (Z )

X exp

7 )

S
j=1 (11,,1_7']-

the base of exp s the same as the base of log. The inequalities in (36) are reversed if the base of
log is between 0 and 1.

(@) If 0<A <1, and the base of log is greater than 1, then
Hy(r) > AM > Al L2 AM <Al — (37)

= mm =~ mm— 1— m2 =4yl =

where

1 (m=1)! . (=7 itz
A,%]n =15 ( ) Z ny, (01, - - - 0p) (Z j > Xlog| —; [,,l]_f . (39
l 4 :

=1 P

The inequalities in (37) are reversed if the base of log is between O and 1.

Proof. (i) Suppose q = l then from (24), we have

log ( Z n 1rk> log(n 1og ( Z 7 > 39)

Dy(r, q)

therefore we have
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AJMS Now using Theorem 4.1 (¢) and (40), we get

26,1/2 1 1
H,(r) = log(n) — D, (r,ﬁ) > .- >log(n) — =1
=t
; ’,Zi A1
I >
28 < log | 1= D! : ( 7 (1)
g | 7 Z 7]1,%,1(11, all) X Z 7.
=1 6 e =1 Y Zﬁ:lab,f.y

> - 2log(n) — Dy(r, q) = H,(r),

(#) and (st) can be proved similarly. [

Corollary 4.4. Assume (Hy) and let v = (r1,...,1r,) and q = (q1, . ..,qn) are positive
probability distributions.

If either 0 <A < 1 and the base of log is greater than 1, or 1 < \ and the base of log is
between 0 and 1, then

1 - 15 15 15
—sr > Poglr) = A2 AN 2 2 AR, 2 AL

z:lZI A L m,] =4 m2 = m— m,m (42)
16 16] 16)
2H(r) 2 AL, 2 A0 2 A, 2 A = H(r),

where

and
Y
| L o 1) - Loy =ay,
L — > i u)(Z )l
LU ? ’ 7
m 1-—2 (Z _ 1)! o e =1 Ollm,zj ijl [
T i

The inequalities in (42) are reversed if either 0 <\ < 1and the base of logis between 0 and 1, or
1 < hand the base of log is greater than 1.

Proof. The proof is similar to Corollary 4.3 by using Theorem 4.2. []

5. Inequalities by using Zipf—-Mandelbrot law

In probability theory and statistics, the Zipf—-Mandelbrot law is a distribution. It is a power
law distribution on ranked data, named after the linguist G. K. Zipf who suggests a simpler
distribution called Zipf’s law. The Zipf’s law is defined as follows (see [32]).



Definition 6. Let N be a number of elements, s be their rank and # be the value of exponent
characterizing the distribution. Zipf's law then predicts that out of a population of N
elements, the normalized frequency of element of rank s, f (s, IV, f) is

1
f(s,N, 1) = =
il
The Zipf-Mandelbrot law is defined as follows (see [22]).

Definition 7. Zipf-Mandelbrot law is a discrete probability distribution depending on
three parameters N € {1,2,...,},g €0, 00) and ¢ > 0, and is defined by

43)

1
f(saN7Qat) = 5:17"'aN: (44)
(S+ Q)tHN,q‘t
where
S|
Hyp=Y —— (45)
' Zo +9)

If the total mass of the law is taken over all N, then for ¢ > 0,7 > 1, s € N, density function of
Zipf-Mandelbrot law becomes

1

f(s:q,1) :(ST)th,t’

(46)

where

Hy, = Z (47)

(J+q

For g = 0, the Zipf—-Mandelbrot law (44) becomes Zipf's law (43).

Conclusion 5.1. Assume (Hy), let v be a Zipf—Mandelbrot law, by Corollary 4.3 (iif), we get: If
0<\ < 1, and the base of log is greater than 1, then

1 1 al 1
H, = 1 E > 00>
o) I-2 Og<H1/\\/qt =1 (9+Q)M> -

1 (m—1) L
1-x (-1 D (;m z]+qHqu>

(1) €L
I (48)
. 1 Zf:lalm.lju;—w“
X log e ; i 22
A T e

N logs+q
+10 H =S.
HN,q, ; ( ; g( qu‘)

The inequalities in (48) are reversed if the base of log is between O and 1.
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Conclusion 5.2. Assume (Hy), let v1 and r3 be the Zipf—~Mandelbort law with parameters
Ne{l,2,...}, q1,q2 €0, ) and s1, sz > 0, respectively, then from Corollary 3.2 (i), we
have if the base of L is greater than 1, then

_ n 1 tzH
D(ry,15) = Z - log (H(h); Vaste | 5 ..
= (5+611) Hy g1 (s+q1)" Hy g, 1

..... A€l
-1 -1
, 1 Zl (0D Hy gy 1) Z[ Gra) L Hy gy 1y
1]+‘12)2H\ a9ty j=1 afmvl]' j=1 (llm.ij
x E ] Xlog| ————— | = =0.
J=1 Xy i Zl (ij+42)"2 HN gy 1y Z[ (i+ay)2 HY g0ty
j=1 Ay i =1 alm-ij
49)

The inequalities in (49) are reversed if the base of 1 is between 0 and 1.

6. Shannon entropy, Zipf-Mandelbrot law and hybrid Zipf-Mandelbrot law
Here we maximize the Shannon entropy using method of Lagrange multiplier under some
equations constraints and get the Zipf—-Mandelbrot law.

Theorem 6.1. If | ={1,2,...,N}, for a given q>0 a probability distribution that
maximizes the Shannon entropy under the constraints

ng =1, Zn(ln(s +9q) =,

seJ sejf

is Zipf—-Mandelbrot law.

Proof. If / ={1,2,...,N}, we set the Lagrange multipliers A and { and consider the
expression

S zN:rlmq—}»(ng—l) —t(ZrlnH—q )

s=1

Just for the sake of convenience, replace A by In A — 1, thus the last expression gives

= an— (Inx—1) <Zr—1>—t(271ﬂs+q )

From S}S = 0,fors=1,2,...,N, we get
B 1
Ms+q)

. . N
and on using the constraint > ,7, = 1, we have



. 1
= ;((er 1)
where ¢ > 0, concluding that
1
rszm, s=1,2,...,N.0

Remark 6.2. Observe that the Zipf-Mandelbrot law and Shannon Entropy can be bounded
from above (see [23]).

N N
S = - Zf(st7qa t)lnf(st7Q7 t) S - Zf(S7Naq7 t)lrIQ5
s=1 s=1
where (q1, . ..,qy) is a positive N-tuple such that ZJSV: g5 =1

Theorem 6.3. If ] ={1,...,N}, then probability distribution that maximizes Shannon
entropy under constraints

Zf’s =1, erln(erq) =Y, an =7
sef sef sef
1s hybrid Zipf—Mandelbrot law given as
wS

=, s€J],
(s+q)'®" (k.q,w) !

where

w’
@y (k,q,0) =Y —

seJ (S+q) .

Proof. First consider / = {1,...,N}, we set the Lagrange multiplier and consider the
expression

N

N
S=- rslnrs—i-lnw(z:srs—n) (Inx—1) <er—1>—k<zhlns+q )
s=1 s=1

On setting S‘y; = 0,fors=1,...,N, we get
~Inr,+slnw—Ink —kln(s+¢q) =0,

after solving for 7, we get A = Z — . and we recognize this as the partial sum of Lerch’s

q)
transcendent that we will denote by

N
v (kg w Z

sl‘S

W1thw>0 k> 0.

O

Remark 6.4. Observe that for Zipf~Mandelbrot law, Shannon entropy can be bounded
from above (see [23]).
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N

N
S=- Zﬁl(S7N7 q, k)lnﬁl(S7N7q7 k) < - ZE(SJ\L q, k)h’lq§

s=1 s=1

where (q1, . .., qy) is any positive N-tuple such that Z “.qs=1
Under the assumption of Theorem 2.1 (7), define the non-negative functionals as follows:

, AN

Os(f) = /), —f (%—1[1) Dot r=1...m, (50)
s=14s s=1

Ouf) =AW — o/l 1<r<k<m. (51)

Under the assumption of Theorem 2.1 (iz), define the non-negative functionals as follows:

@5(.f MEL]T’_ <Z7’) ( 7 IZS)’ 7’:1,...,74’!, (52)
sl5

Os(f) = /2, — /7

mk?

1<r<k<m. (53)

Under the assumption of Corollary 3.1 (z), define the following non-negative functionals

0:(f) = A2 + Zqilog(qi), r=1,....n (54)

i=1

Os(f) =AY — AP

myr mk>

1<r<k<m. (55)
Under the assumption of Corollary 3.1 (i), define the following non-negative functionals as
O(f)=Al, —-S, r=1,....m (56)

Onl(f) =Al, - Al 1<r<k<m (57)

Under the assumption of Corollary 3.2 (i), let us define the non-negative functionals as
follows:

n n ; (58)
on(f) = AL, =Y "rlog ( > 1ogz,f—q> ,or=1...,m
s s=14s

On(f) =AY, — A, 1<r<k<m. (59)
Under the assumption of Corollary 3.2 (iZ), define the non-negative functionals as follows
Ou(f) =Al, —AY, 1<r<k<m (60)
Under the assumption of Theorem 4.1 (z), consider the following functionals
ou(f) = W—Dk(r,q), r=1,...,m 61)

Oi(f) =All A, 1<r<k<m 62

7



Under the assumption of Theorem 4.1 (iz), consider the following functionals:
O(f) = AEN Di(r,q), r=1,...,m 63)
Oulf)=A8 — AV, 1<r<k<m (64)

Under the assumption of Theorem 4.1 (iiZ), consider the following functionals:

@ls(f) :ALZ]fiD)L(r’q)’ 7/:17‘7m (65)
On(f) = AL, — A}

mr m.k?

1<r<k<m. (66)

Under the assumption of Theorem 4.2 consider the following non-negative functionals

Oxn(f) = Dy(r,q) — W, r=1,....m 67)

O (f) = ,[n —AM 1<y <k<m. 68)

Ox(f) = m, —Dy(r,q), r=1,...,m (69)
@zg(f) =AM AN 1<r <k<m. (70)

Ou(f) =AL ANy =1...om, k=1,..m. (71)

Under the assumption of Corollary 4.3 (i), consider the following non-negative functionals

O(f) =Hy(xr) =AM, r=1,...,m 72
O(f) = A0 — A2, 1<r <k<m. (73)

Under the assumption of Corollary 4.3 (ii), consider the following functionals

On(f)=S—Al r=1,....m (74)
Ox(f) =AY, — A, 1<r<k<m. (75)

Under the assumption of Corollary 4.3 (iii), consider the following functionals
Ox(f) = H,(r) ngfj, r=1,....m (76)
6y (f) = A%]e — Al

m,r?

1<r<k<m. (77)
Under the assumption of Corollary 4.4, define the following functionals
0y =Al (), r=1,....m (78)
O =AY — A 1<r<k<m. (79)

m

Hk( ) A]G]

mpy?

r=1,...,m (80)
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Oy = AN — A 1<r <k<m. @81)
O =Al — Al r=1...m k=1..m 82

7. Generalization of refinement of Jensen’s, Rényi and Shannon type inequalities
Fink’s Identity and Abel-Gontscharoff Green function
In [13], A. M. Fink gave the following result.

Let f:[a1, 2] = R, where [a,as] be an interval, is a function such that f*~ is
absolutely continuous then the following identity holds

raty n—-1 _ (A1) . — k_ (A1) 1 - Iy
fl@)=—= / f(C)dC+Z"M}\<f (a2) (2 — az)” — f*7 (o) (2 a))
1

o — Q1 Az — o

Rl / - O FR (" (0)de, 3

(n—1laz —

where

{—a, m<{<z<a;
a2 —
Faica) = {C*(Zz, <2< L. &4
The complete reference about Abel-Gontscharoff polynomial and theorem for ‘two-point
right focal’ problem is given in [1].
The Abel-Gontscharoff polynomial for ‘two-point right focal interpolating polynomial for
n = 2 can be given as

a
7@) = @) + G —a)f (@) + [ Gilau)f (w)d. )
ay
where
o a; —w, a1S1/USZ;
Gl(z’w)_{al—z, z2<w<Las. (86)
In[8], S. I. Butt et al. gave some new types of Green functions defined as
_ ay —Z, ay <w SZ;
Guev) = { 2% B &
o zZ— 0y, a <w SZ;
Gleve) = {50 =S )
_ dy — W, alsws.z;
@@mO—{ar_& z<w<ay, ®9)

Figure 1 shows the graph of Green functions G;(z,w),i =1,2,3,4 defined in (86)-(89)
respectively for fixed value of w. They also introduced some new Abel-Gontscharoff type
identities by using these new Green functions in the following lemma.

Lemma A. Letf : [y, az] be a twice differentiable function and G, (k = 2,3,4) be the ‘two-
point right focal problem’-type Green functions defined by 87)—@89). Then the following
identities hold:

(&) = Flar) — (e — 2)f (o) — / * Gole,w)f" (w)do, (90)

1



al’ b © S
-20 G, -20 :
-4
-40 0
-60
-60
-80
~80 -100
-100 -120
100 -50 0 50 100 -100 -50 O 50 100
z z
C 200 d 200
180 G, - Gy
160
160
140
140
120
100 120
80 100
-100 -50 ©0 50 100 -100 -50 0 50 100

N
N

f(2) = f(az) = (az — ) (a2) + (2 — n) f (@) + /le Gs(z,w)f" (w)duo

F(2) = Flm) + (@ — ) f () = (az = 2) f (@) + /az Gu(z,w) f (w)dw
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Figure 1.
Graph of Green
functions for fix uw.

o1

92)

Theorem 7.1. Assume (Hy), andlet f : I = [y, 2] = R be a function such that for m>3
(an integer) ™=V is absolutely continuous. Also, let x1, ..., %, €L, 1, . .., pn e positive real

numbers such that " pi= 1. Assume that F\ o Gr(k=1,2,3,4)and 6; (i =1, ...

the same as defined in (84), (86)—(89), (2), (3), (50)—(82) respectively.
Then:

1) Fork=1,3,4we have the following identities:
0:7) = on -2 (N [ 66w+
o 2 =

Q2 — o

m

T —a) /f

x(/ @i(G( w))(w — )" Fay(C,w )dw)dg, i=1,...,35.

XZ(WL 2— 7») Hl(a)( ,az)x7f(”1>(a1)(w7a1)x)dw

,35) are

a /Ul2 0 (G(+,w))

93)
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2) Fork = 2we have
6./) = (-1)0m -2 (N2 [ 66y

@ —m 1
_ a m—3 _ 9 _
" —ai —1311 / Oi(Gal,w)) X (MTZ'K> () (w0 — )’
. _ a 94)
— U () (w — a)") dw + m / ™)

x ( | et wp -y w)dw) .

Proof. (i) Using Abel-Gontsharoff-typeidentities (85), (91), (92) in ©;(f),7 =1, ..., 35, and
using properties of @;(f), we get

d

oi(f) = /az Oi(Gy(+,w))f (w)dw, i=1,2. 95)

From identity (83), we get

f’(Mz(m—@(M)er_s(m_k—z!_x)

& —a p)
NGCTE s
ay — Q1
+ . /“2 (w— C)"Z_SF”Z(C w)f ™ (£)d¢. 96)
(m—3)(az — 1) Jo @

Using (95) and (96) and applying Fubini’s theorem we get the result (93) for £ =1, 3, 4.
(i) Substituting Abel-Gontscharoff-typeinequality (90) in 6;(f), i =1,...,35 and
following similar steps to (i), we get (94). (I

Theorem 7.2. Assume (Hy), and let f : I = [a1, az] — R be a function such that for m >3

(an integer) £~V s absolutely continuous. Also, let x1, . .., x, €L, p1, ..., Dy are positive real
numbers such that Y. \p; = 1. Assume that F2, Gy (k =1,2,3,4) and 6; ( = 1,2) are the
same as defined in (84), (86)—(89), (2), (3), (50)—(82) respectively. For m > 3 assume that

/az 0(Gi(+ ) (w — O F (¢ wdw>0, € o), i=1,...,35, (@)

for k= 1,3,4 If f is an m-convex function, then



@) For k =1, 3,4, the following holds:
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@i<f>z<m—2>( L) [ 6,y

1 a Em -2 . N
“ama ], S S (M5 )(f“”<“2><w—“2> o
— D () (w — o)) dw,
i=1,....3.

(i) For k = 2, we have

0,(f) <(~1)(m — 2) (f(“)‘f(“)) / * 0.Go(w))dw

az —

— O (an) (w — ar)")dw,
i=1,....3

Proof. (i) Since £~V is absolutely continuous on [ay, ap), f”) exists almost everywhere.
Also, since f is m-convex therefore we have £ (¢) >0 for a.e. on [a1, az). So, applying
Theorem 1.1, we obtain (98).

(i1) Similar to (1). O

Remark A. We can investigate the bounds for the identities related to the generalization of
refinement of Jensen inequality using inequalities for the CebySev functional and some
results relating to the Gfuss and Ostrowski type inequalities can be constructed as given in
Section 3 of [6]. Also we can construct the non-negative functionals from inequalities (98)—(99)
and give related mean value theorems and we can construct the new families of
m-exponentially convex functions and Cauchy means related to these functionals as given
in Section 4 of [6].
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